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Beleidssamenvatting  

In het Vlaamse secundair onderwijs zijn er vier onderwijsvormen: het algemeen secundair onderwijs 

(aso), het technisch secundair onderwijs (tso), het beroepssecundair onderwijs (bso) en het 

kunstsecundair onderwijs (kso). Binnen het aso wordt daarbij vaak een onderscheid gemaakt 

tussen klassieke talen en moderne studierichtingen. Deze onderwijsvormen worden pas formeel 

ingericht vanaf de tweede graad van het secundair onderwijs, maar in de praktijk spreken 

leerlingen, ouders en scholen al in termen van onderwijsvormen in de eerste graad. In heel wat 

scholen zijn de onderwijsvormen reeds ‘te herkennen’ in het onderwijsaanbod van de eerste graad. 

In het tweede leerjaar van de eerste graad worden namelijk basisopties ingericht die aansluiten op 

deze onderwijsvormen. De meeste scholen gebruiken hun pedagogische vrijheid voor het invullen 

van lesuren in het eerste leerjaar ook als voorbereiding op de onderwijsvormen in de bovenbouw. 

In de eerste graad bereiden het eerste leerjaar B en het beroepsvoorbereidend leerjaar voor op het 

bso.  

Bij beleidsmakers is er discussie over mogelijke effecten van deze onderwijsvormen op schoolse 

prestaties. Voorstanders argumenteren dat onderwijsvormen die aansluiten op de vaardigheden 

en interesses van leerlingen de schoolse prestaties van leerlingen verbeteren. Tegenstanders 

argumenteren echter dat sociale ongelijkheid in schoolse prestaties tussen leerlingen versterkt 

wordt doordat de onderwijsvormen verschillen in hun mogelijkheden tot leerwinst.   

In wetenschappelijk onderzoek wordt het inrichten van verschillende onderwijsvormen tracking 

genoemd. Er zijn diverse studies die onderwijssystemen met tracking (categoriale 

onderwijssystemen) vergelijken met onderwijssystemen zonder tracking (eerder comprehensieve 

onderwijssystemen). Deze studies tonen over het algemeen geen positief of negatief effect van 

tracking op de gemiddelde schoolse prestaties van onderwijssystemen. Een meerderheid van deze 

studies toont wel dat tracking de sociale ongelijkheid in schoolse prestaties versterkt, maar het 

effect is doorgaans beperkt. Studies die onderwijssystemen vergelijken beschrijven echter alleen 

gemiddelde verschillen tussen groepen van onderwijssystemen. De internationaal vergelijkende 

studies gaan dus niet in op de precieze effecten van de (gepercipieerde) hiërarchie tussen tracks 

binnen een land. In dit rapport willen we daarom inzoomen op de effecten van tracking binnen 

Vlaanderen.   

Onderzoek naar de effecten van tracks op schoolse prestaties van leerlingen in Vlaanderen is vereist 

om na te gaan of deze de ongelijkheid tussen leerlingen versterken. Als tracks namelijk deze 

ongelijkheid versterken, dan verwachten we dat tracks met een instroom van initieel sterker 

presterende leerlingen ook meer leerwinst maken. Hiervoor moet de gemiddelde leerwinst per 

track vergeleken worden. Eventuele verschillen in leerwinst tussen tracks zijn dan wel mogelijk toe 

te schrijven aan verschillen in instroom van leerlingen. Daarom moet ook onderzocht worden of er 

effecten zijn van tracks op vergelijkbare leerlingen die in verschillende tracks zitten. Er zijn dus twee 

onderzoeksvragen:  

1. Verschillen tracks in gemiddelde leerwinst?  

2. Verschillen tracks in gemiddelde leerwinst voor vergelijkbare leerlingen?  
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Voor dit onderzoek gebruiken we de gegevens van het onderzoek 'Loopbanen in het Secundair 

Onderwijs’ (LiSO-project). De substeekproef bestaat uit 3025 leerlingen die in september 2013 

startten in het secundair onderwijs in 45 Vlaamse scholen. We onderscheiden vier groepen van 

studiekeuzes in het eerste jaar secundair onderwijs: (1) klassieke talen (KT), (2) moderne 

wetenschappen (MW), (3) technisch onderwijs (TO) en (4) beroepsvoorbereidend onderwijs (BV). 

Hoewel er in het eerste jaar secundair onderwijs nog geen officiële onderwijsvormen 

onderscheiden worden, sluit de studiekeuze in het eerste jaar SO wel sterk aan bij de 

onderwijsvormen die in de bovenbouw zullen volgen. In dit Engelstalige rapport wordt daarom wél 

gesproken over ‘tracking’ in het eerste jaar secundair onderwijs, omdat het gaat over het groeperen 

van leerlingen voor een volledig schooljaar voor (quasi) alle vakken.   

De steekproef is verspreid over de vier ‘tracks’ als volgt: 691 leerlingen zaten in KT, 1285 leerlingen 

zaten in MW, 663 leerlingen zaten in TO en 566 leerlingen zaten in BV. Enkel leerlingen die de eerste 

drie jaar van het secundair onderwijs in dezelfde track zitten werden opgenomen in deze 

substeekproef. Drie LiSO-scholen die kiezen voor een heterogene klassamenstelling in het eerste 

jaar, werden geschrapt uit de steekproef van deze studie omdat er dus niet aan tracking wordt 

gedaan. Toetsen en vragenlijsten werden afgenomen aan de start van het secundair onderwijs 

(september 2013), op het einde van het eerste leerjaar van de eerste graad (mei 2014), op het einde 

van het tweede leerjaar van de eerste graad (mei 2015) en op het einde van eerste leerjaar van de 

tweede graad (mei 2016). Prestaties voor wiskunde werden gemeten op elk van deze momenten. 

Dit onderzoek beschrijft dus de effecten van tracks tijdens de eerste drie jaar van het secundair 

onderwijs op wiskunde.  

Om vergelijkbare leerlingen in verschillende tracks te vinden gebruiken we matching methoden. 

Deze zijn gericht op het vinden van vergelijkbare personen in verschillende omgevingen. Leerlingen 

werden gematched op basis van schoolse prestaties, sociaaleconomische achtergrond en 

psychosociale variabelen die gemeten waren in september 2013. In totaal werd de vergelijkbaarheid 

van de leerlingen bepaald aan de hand van 25 variabelen. Om onze resultaten methode-

onafhankelijk te maken gebruiken we verschillende matching-methoden. Bij elk van deze methoden 

bleek dat er enkel (voldoende) vergelijkbare leerlingen waren tussen bepaalde tracks. KT wordt 

daarom vergeleken met het MW, MW wordt vergeleken met TO en TO wordt vergeleken met BO. 

Er moet opgemerkt worden dat het aantal vergelijkbare leerlingen tussen TO en BV eerder beperkt 

is. Verschillen tussen tracks in gemiddelde leerwinst worden tweemaal berekend: (1) zonder het 

matchen, dus voor alle leerlingen, en (2) na het matchen van vergelijkbare leerlingen in verschillende 

tracks.  

Voor de eerste onderzoeksvraag vinden we dat er bij het begin van het secundair onderwijs grote 

verschillen zijn in schoolse prestaties tussen de tracks. We stellen vast dat de leerlingen in KT de 

hoogste gemiddelde aanvangsscores hebben voor wiskunde. Daarna volgen de leerlingen in MW, 

de leerlingen in TO en de leerlingen in BO. Voor wiskunde maken de vier tracks een gelijke leerwinst 

over de eerste drie jaar secundair onderwijs. Anders gezegd: de kloof in wiskundeprestaties tussen 

de vier groepen blijft ongeveer dezelfde tijdens de drie eerste jaren in het secundair onderwijs. De 

wiskundeverschillen tussen de vier groepen worden niet groter, maar ook niet kleiner. Voor 

wiskunde wordt dus niet voldaan aan de hypothese dat tracks met een sterkere instroom van 

leerlingen meer leerwinst maken.  
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Voor de tweede onderzoeksvraag vinden we voor vergelijkbare leerlingen in verschillende tracks 

dat er in tracks met een gemiddeld sterkere leerlinginstroom significant meer leerwinst gemaakt 

wordt. We zien echter dat bij de vergelijking KT en MW, en bij de vergelijking MW en TO het effect 

klein is. Enkel voor de vergelijking TO en BV is het effect groot. Een leerling die kiest voor BV, maakt 

dus gemiddeld minder leerwinst voor wiskunde dan een vergelijkbare leerling die kiest voor TO. We 

hebben ook zicht op wanneer dit verschil ontstaat en zien dat dit effect zich vooral in het eerste 

jaar manifesteert. Het effect vergroot niet meer in de daaropvolgende jaren.   

Een sterk punt van dit onderzoek is dat door de matching-methode nagegaan kan worden hoe 

vergelijkbare leerlingen zouden presteren als ze in een andere track zouden zitten. Dit is vooral 

mogelijk doordat tracking in Vlaanderen een eigenschap heeft die niet kenmerkend is voor de 

meeste andere onderwijssystemen. In Vlaanderen verloopt het verdelen van leerlingen in tracks 

immers niet op basis van objectieve criteria (bijvoorbeeld een instaptoets). Hierdoor verschillen de 

tracks wel gemiddeld op het vlak van instroomniveau, maar vinden we nog steeds veel vergelijkbare 

leerlingen terug in verschillende tracks. In andere onderwijssystemen zien we dat er minder of 

nauwelijks vergelijkbare leerlingen zijn in verschillende tracks.  

We concluderen dat zowel in KT, MW als TO de gemiddelde leerlingen in elk van deze tracks een 

eerder gelijkaardige leerwinst maken voor wiskunde. Wanneer we naar vergelijkbare leerlingen 

kijken in aso KT, MW en TO vinden we wel positieve effecten van naar een track gaan met een 

sterkere leerlinginstroom. Deze effecten zijn echter vrij klein en lijken eerder beperkt bij te dragen 

aan ongelijkheid in schoolse prestaties. Voor vergelijkbare leerlingen in het TO en BV vinden we wel 

grote negatieve effecten van naar het BV gaan. Hierdoor wordt de ongelijkheid tussen leerlingen in 

schoolse prestaties wel merkbaar versterkt.  

De resultaten geven hoofdzakelijk weer hoe leerlingen beïnvloed worden door de huidige structuur 

van het secundair onderwijs. We tonen dat ‘hoog mikken’, een strategie die vaak gebruikt wordt bij 

studiekeuze, slechts een beperkt positief effect heeft op schoolse prestaties voor de vergelijking 

KT en MW, en de vergelijking in MW en TO. Dit klein positief effect ontstaat daarbij enkel in het 

eerste jaar, wat naar onze mening vooral aantoont dat sterkere leerlingen in MW en TO tijdens het 

eerste jaar enigszins meer uitdaging nodig hebben. Hoog mikken in de vergelijking TO en BV toont 

een groter effect, echter heeft deze uitspraak enkel betrekking op sterkste leerlingen in het BV. De 

sterkste leerlingen van het BV hebben dus meer uitdaging nodig dan hun nu geboden wordt. 

Wanneer we de resultaten van dit onderzoek samenleggen met de resultaten van het onderzoek 

naar de effecten van tracks op academisch zelfconcept (SONO/2017.OL1.1/13), dan blijkt er een 

interessante afweging te zijn. Bij de vergelijking MW en TO, en de vergelijking TO en BV is ‘hoog 

mikken’ immers net negatief voor academisch zelfconcept. Verder onderzoek naar de effecten van 

tracks op een breder scala van uitkomsten is echter lopende, alsook de effecten van track 

verandering. Zo kunnen de effecten van tracks binnen het Vlaamse onderwijs beter geduid worden 

en welke afwegingen bij studiekeuze gemaakt moeten worden.  
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1. Introduction  

Most education systems track students during secondary school, placing them into educational 

environments tailored to their abilities and interests (e.g. Hanushek & Wößmann, 2006; OECD, 2012; 

Trautwein, Lüdtke, Marsh, Köller, & Baumert, 2006; Van de Werfhorst & Mijs, 2010). The goal of 

tracking is to advance academic performance, based on the assumption that an environment fitted 

to students will lead to efficient education (e.g. Hanushek & Wößmann, 2006; LeTendre, Hofer, & 

Shimizu, 2003). Hence, this assumed efficiency is a strong rationale for policy makers to either retain 

or implement some form of tracking.  

However, there is a long-standing debate on the merits and detriments of tracking in both political 

and scientific spheres (e.g. Trautwein et al., 2006). Studies comparing education systems have 

shown that early tracking increases social inequality in academic performance, while not advancing 

academic performance of the education system (e.g. Van de Werfhorst & Mijs, 2010). The increasing 

inequality is usually attributed to lower socioeconomic status students being allocated to lower 

tracks (e.g. Jackson, Erikson, Goldthorpe, & Yaish, 2007). Due to less focus on performance in these 

tracks, the differences in student academic performance between social groups are widened over 

time (e.g. Hanushek & Wößmann, 2006).  

Much research on assessing the effects of tracks on academic performance is based on comparing 

education systems (e.g. Hanushek & Wößmann, 2010; Lavrijsen & Nicaise, 2015; Van de Werfhorst 

& Mijs, 2010). Such studies describe relations between variables aggregated to the level of the 

education system, not showing the effects of different tracks within education systems. However, 

the differences between education systems with different tracking practices are usually attributed 

to the effects of tracks within education systems (e.g. Hanushek & Wößmann, 2006). Furthermore, 

there are many differences in tracking practices between education systems, while comparisons of 

educational systems generally only distinguish between early and late tracking systems (e.g. OECD, 

2012; Trautwein et al., 2006). Directly assessing the effects of tracks within education systems has 

so far happened only sparingly (e.g. Retelsdorf, Becker, Köller, & Möller, 2012), thus there is a need 

to ascertain these effects within education systems.   

Ascertaining the effects of tracks requires data and methods that can control for selection bias 

resulting from differential student intake across tracks. Moreover, longitudinal data and methods 

that can describe academic development are preferable (e.g. Raudenbush, 2001; Robins, 1997). To 

control for selection bias, we matched comparable students across different tracks and compared 

academic outcomes between higher and lower tracks. In the following sections, we describe 

tracking literature and the research strategy in more detail.  

1.1. What is tracking?  

Tracking is usually understood as the ability-grouping of students into different educational 

programs called tracks (e.g. OECD, 2012; Trautwein et al., 2006; Van de Werfhorst & Mijs, 2010). 

Most education systems track students during secondary education, but they differ in 

implementation (OECD, 2012, p.57-58). These implementation differences encompass the age when 
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tracking starts (e.g. Brunello & Checchi, 2007; OECD, 2012; Van de Werfhorst & Mijs, 2010), whether 

student track assignment is based on either ability, interest or even financial resources (e.g. 

Brunello & Checchi, 2007; Buser, Niederle, & Oosterbeek, 2014; Trautwein et al., 2006), whether 

track assignment depends on standardized tests (e.g. Bol, Witschge, Van de Werfhorst, & Dronkers, 

2014; Tieben, de Graaf, & de Graaf, 2010; Trautwein et al., 2006), the number of tracks (e.g. Thijs Bol 

& van de Werfhorst, 2013; Brunello & Checchi, 2007), the differentiation between tracks (e.g. do 

they have a strong vocational focus or do broad similarities in curriculum remain; e.g. Shavit & 

Müller, 2000) whether track changes happen often (e.g. Guill, Lüdtke, & Köller, 2016), and whether 

different tracks exist within classes, each class belongs to a separate track or each school belongs 

to a separate track (e.g. Trautwein et al., 2006; Van de Werfhorst & Mijs, 2010). Hence, while 

tracking is a ubiquitous practice of placing students into different educational programs, its specific 

implementation differs between education systems.  

The prevalence of tracking across education systems raises the question why students are tracked. 

Generally, the intention is to create learning environments tailored to different student groups. For 

these tracks create more homogeneous student groups, with the opportunity of focusing curricula 

and teachers on specific learning needs, benefitting academic performance (e.g. Hanushek & 

Wößmann, 2006). This differentiation of students also allows for skill specialization, which is valued 

by the labor market (e.g. Bol & van de Werfhorst, 2013; Kerckhoff, 2001; Van de Werfhorst & Mijs, 

2010). However, students from different social backgrounds are thereby separated, providing a 

form of social closure. This institutionalizes social distance between student groups (for a 

discussion see Bol & van de Werfhorst, 2013, pp. 287-289). In sum, tracks are assumed to improve 

efficiency of education systems, at the cost of institutionalizing social distance.  

The goal of tracks improving efficiency and consequently institutionalizing social distance has 

guided research into tracking. It ties into the notion that tracking practices matter for student 

academic performance within education systems. Hence, many studies have focused on how 

efficiency and equality in academic performance relate to tracking practices of education systems.  

1.2. Efficiency and equality of education systems  

Many studies have compared education systems to discern the effect of tracking on inequality and 

efficiency, distinguishing between selective systems and comprehensive systems. Generally, the 

former applies when tracking starts at an early age (10 or 12), whereas the latter applies when 

tracking starting at a later age (14 or 16). Inequality is operationalized in different ways in different 

studies (Van de Werfhorst & Mijs, 2010). A first stream of studies used test score dispersions, with 

some having found that selective systems have larger variances in student outcomes (Huang, van 

den Brink, & Groot, 2009; Jenkins, Micklewright, & Schnepf, 2008), while others did not (Brunello 

& Checchi, 2007; Duru-Bellat & Suchaut, 2005; Vandenberge, 2006). A second stream of studies 

investigated the relationship between socioeconomic status and academic performance across 

education systems (Van de Werfhorst & Mijs, 2010). Almost all of these studies concluded that 

selective systems are associated with more social inequality (Ammermüller, 2005; Bauer & Riphahn, 

2006; Brunello & Checchi, 2007; Horn, 2009; Marks, 2005; Schütz, Ursprung, & Wößmann, 2008; 

Wößmann, 2008). A third stream focused on the change in relationship between socioeconomic 

status and academic performance over time across education systems. Most studies found that 
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social inequality increases more in selective systems (Ammermüller, 2005; Hanushek & Wößmann, 

2006; Lavrijsen & Nicaise, 2015), but not all (Waldinger, 2007). None of the three research streams 

have shown a clear relation between tracking and overall efficiency. Thus, the consensus tilts 

towards tracking increasing social inequality in education systems, without improving efficiency.  

Other studies have investigated how changing tracking practices of education systems changes 

student outcomes. Most focused on the effects of de-tracking, changing from a selective system 

to a comprehensive system. Malamud and Pop-Eleches (2011) in Romania found that students from 

disadvantaged areas and students from less educated parents more often finished an academic 

track after the reform. In Finland, Kerr, Pekkarinen and Uusitalo (2013) found small positive effects 

on verbal test scores, but not in arithmetic and logical reasoning. However, test scores of students 

whose parents did not receive a high school education did improve. Furthermore, the effect of the 

father’s income on student performance was reduced. Hall (2012) showed that the amount of upper 

secondary schooling increased among vocational students in Sweden. In Poland, Jakubowski, 

Patrinos, Porta and Wiśniewski (2016) found a positive impact on student performance for the 

whole sample. Piopiunik (2014) evaluated the reverse situation from the former authors, for in 

Bavaria tracking was hastened by two years. The results indicated a reduction in performance in 

middle to lower track schools while the number of low-performing students increased in lower 

track schools. Generally, previous research shows that comprehensive systems benefit 

disadvantaged students.  

However, the distinction between selective and comprehensive systems is somewhat arbitrary, 

with the age when tracking starts typically used as criterion. Such a distinction does not account 

for the other aforementioned aspects that characterize the implementation of tracking. 

Accordingly, studies have found very specific aspects of tracking practices mattering for student 

outcomes, outside of the comprehensive-selective dichotomy. These encompass whether track 

assignment is dependent on test scores or is a free choice (Ayalon & Gamoran, 2000; Bol et al., 2014; 

Tieben et al., 2010), the vocational focus of tracks and if between-school tracking or within-school 

tracking applies (Van de Werfhorst & Mijs, 2010). Furthermore, how tracks are implemented cannot 

be completely separated from other characteristics in education systems. For example, Mons 

(2007) considers tracking as just one method of managing student heterogeneity, next to methods 

such as ability grouping, grade retention or differentiated teaching (Dupriez, Dumay, & Vause, 

2008). In sum, each education system provides a unique educational context and researchers 

should be cautious when drawing conclusions from cross-national comparisons. The many 

dissimilarities between education systems also provide an argument to investigate track effects 

within education systems.  

1.3. How does tracking increase social inequality?  

Inequality in academic performance due to tracking is typically explained using Boudon's (1974) 

theory on primary and secondary effects (Hanushek & Wößmann, 2006; Van de Werfhorst & Mijs, 

2010). The primary effect entails that higher performing students are more often allocated to higher 

tracks compared to lower performing students. The secondary effect entails that higher 

socioeconomic status students are more often allocated to higher tracks than lower socioeconomic 

status students, even with identical academic performance. There is broad empirical evidence of 

the existence of both primary and secondary effects (Erikson, Goldthorpe, Jackson, Yaish, & Cox, 
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2005; Jackson et al., 2007; Kloosterman, Ruiter, De Graaf, & Kraaykamp, 2009). Rational action 

theory explains secondary effects due to students avoiding intergenerational downward mobility 

(Breen & Goldthorpe, 1997) and preferring a track with equal or higher status than their parents. 

Hence, students whose parents followed a lower track are satisfied with a lower track, while 

students whose parents followed a higher track are not. Moreover, low socioeconomic status 

students more often get teacher recommendations that orient them towards lower tracks (Boone 

& Van Houtte, 2013; Ditton, Krüsken, & Schauenberg, 2005).  

When students are allocated to different tracks, they are subjected to different learning 

environments, both by pedagogical design and by peer-group composition. These differences are 

wide-ranging, concerning student behavior in peer relations, academic focus and aggression (Barth, 

Dunlap, Dane, Lochman, & Wells, 2004), an anti-school culture in lower tracks (Van de gaer, 

Pustjens, Van Damme, & De Munter, 2006), teacher beliefs about their classrooms (Hallam & Ireson, 

2003) and teachers’ (pedagogical) content knowledge (Baumert et al., 2010). Furthermore, 

research has shown that in higher tracks higher levels of problem solving and cognitive activating 

instructions are given, whereas in low tracks memorization and disciplining students are 

emphasized (Kunter & Baumert, 2006; Retelsdorf, Butler, Streblow, & Schiefele, 2010; Van Houtte, 

2004). Though, we stress that the effects of pedagogical design and peer-group composition are 

typically inseparable, with pedagogical response resulting from peer-group composition and vice 

versa (e.g. Gamoran, 1992; Ireson, Hallam, & Plewis, 2001).   

Concluding, tracks increase social inequality due to different student-groups being allocated into 

different tracks and the differences in educational environments provided by those tracks.  

1.4. Track effects within education systems  

Studies addressing the effect of being in a higher or lower track within one education system are 

relatively rare. The few earlier studies mainly used (multilevel) regression models to gauge track 

effects, adding confounders (i.e. variables which predict both track allocation and the outcome of 

interest) as covariates to control for selection bias. With this approach Retelsdorf and Möller (2008) 

found less gains in reading comprehension in a lower track than in a higher track in Germany. 

Accordingly, Gustafsson, (2008) used structural equations to test track effects on latent 

intelligence factors in a Norwegian sample. This study showed that being in a higher track benefits 

both visual and crystalized intelligence. Also in Germany, Becker (2009) found that students in a 

higher track gained intelligence compared to students in a lower track.  

Recently, several authors critiqued regression-based models in discerning track effects for not 

satisfactory reducing confounding and potential extrapolation. Instead, these authors promoted 

quasi-experimental methods to control for confounders. Hence, several authors have used 

propensity score matching (e.g. Schafer & Kang, 2008) to test track effects on student groups with 

comparable confounder distributions in different tracks. This method is only applicable in education 

systems with comparable students across tracks. Three German studies have applied this approach. 

Becker, Lüdtke, Trautwein, Köller and Baumert (2012) found that students in the higher track have 

a larger increase in intelligence. Retelsdorf, Becker, Köller, and Möller (2012) found that students in 

a higher track had larger growth rates for reading decoding speed, although reading 
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comprehension did not differ across tracks. Furthermore, Guill, Lüdtke and Köller (2016) found that 

students in a higher track showed higher intelligence after four years than students in a lower track. 

These studies only looked at average effects at a specific timepoint and didn’t assess whether track 

effects may change over time or across student characteristics.  

In education systems where there is (almost) no overlap in covariate distributions between 

students in different tracks, matching cannot be used. This is typical when student allocation into 

tracks is dependent on test scores, resulting in a threshold value to be assigned to a specific track. 

In such education systems, (fuzzy) regression discontinuity (e.g. Hahn, Todd, & der Klaauw, 2001) 

can be used to investigate track effects by comparing students who are close to this threshold 

value. Students close to this threshold value are considered to be randomly allocated to their track. 

Using this approach in the Netherlands, Korthals and Dronkers (2016) found that higher track 

placement affects intelligence and reading skills positively, but no effect was found for 

mathematics. Furthermore, Kuzmina and Carnoy (2016) found that gains in academic performance 

across tracks are more or less equal in four central European countries.  

Concluding, most studies found significant track effects on academic performance and intelligence. 

However, this is not the case for every outcome in every study. This is somewhat surprising, 

considering that track effects are considered as the key explanation why tracking causes more 

inequality. Further, previous studies did not asses how track effects may change over time or across 

student characteristics. Consequently, further research on track effects within education systems 

is required.  

1.5. The current study  

The purpose of this study was to investigate whether being in a higher track affects academic 

performance within the Flemish education system. This question is apt for Flanders, with PISA 2015 

results showing that, out of 57 regions, Flanders has the first to third largest spread of academic 

performance in mathematics, reading and science for 15-year olds (OECD, 2016, p442-p444).  

Typically, this inequality is at least partially attributed to its highly selective tracking system (Van 

Houtte & Stevens, 2015). However, recent moves towards a more comprehensive system have been 

halted, fearing that this might undermine performance of the whole education system. Hence, any 

policy discussion on the tracking system closely resembles the academic discussion on the equality-

efficiency trade-off due to tracking (for an overview see Brunello & Checchi, 2007, p3p6). Although 

it is tempting to apply conclusions from cross-national comparative research to a specific education 

system, each system’s unique characteristics make such inference questionable (Trautwein et al., 

2006).  

Flemish secondary education has its own characteristic tracking system. Tracking starts at the age 

of 12, when students leave primary school and have to choose a secondary school (OECD, 2012, p57). 

They must choose between the following tracks: classical, modern, technical, or vocational. Each 

track has its own educational program, though the first three tracks share a common core of 

educational goals. Tracks are a class-level variable, with most schools offering two tracks, some 

schools only one track and a few schools three or four tracks. There is no standardized testing in 

Flanders, hence track choice is completely free if a student has attained a certificate of primary 
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education. A secondary school can reject students who received no certificate from all but the 

vocational track. Typically, the track choice is a joint decision of the parents and students, often 

based on the primary school’s advice. The tracks have a clear hierarchy in attracting students with 

different academic abilities and socioeconomic background (Van Houtte, 2004). There is flexibility 

in changing tracks during the early years of secondary education. Over time, students primarily 

remain in their track or go down in the hierarchy of tracks (Boone & Van Houtte, 2013). In short, the 

Flemish education system is typically characterized as a selective tracking system with free track 

choice.  

This study concerned itself with the research question if being in a higher track in Flemish secondary 

education affects student academic performance. Any study on these track effects needs to 

account for the differential intake of students across tracks, a form of selection bias. Therefore, we 

used a matching approach, matching students who are comparable across tracks, disentangling the 

effects of tracks and different student selection across tracks. To make our findings more robust 

we used propensity score matching (Schafer & Kang, 2008), Mahalanobis distance matching 

(Rosenbaum & Rubin, 1985) and coarsened exact matching (Iacus, King, & Porro, 2012). We also 

deemed it plausible that differences in academic performance between tracks may change over 

time, warranting the description of learning growth. Both multilevel latent growth curve models 

(Duncan, Duncan, & Strycker, 2013) and generalized estimating equations (Hardin & Hilbe, 2003) 

were used, as these methods allowed us to discern whether the effects of tracks change over time. 

Furthermore, we gauged if track effects differ across student characteristics.  

Our main hypothesis was that higher track placement benefits students’ academic performance. 

We had no specific hypothesis on how these track effects change over time or across student 

characteristics. In the following section, the sample and methods are described in more detail.  

  

    

2. Method  

2.1. Sample  

The research questions were addressed through analyses of the large-scale longitudinal dataset of 

the LiSO (Dutch acronym for Educational Trajectories in Secondary Education) data collection. This 

ongoing project follows a cohort of 6158 students in 48 schools who started in secondary education 

in the school year 2013-2014. A regional sampling strategy with complete enumeration was used, 

meaning that almost all the students belonging to the aforementioned cohort in all the classes in 

all the schools within a certain area are being studied. Three schools de-track their students in first 

grade, therefore the 675 students (10.96%) from these schools were excluded from the analyses. 

Furthermore, 2278 students of remaining subsample of 5483 students (41.55%) change track during 

the first three years of secondary education; these students were excluded from the analyses as 

well. This resulted in a subsample of 3205 students in 338 classes in 45 schools in grade 7 at the start 
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of secondary education in September 2013 (the first month of the school year in Flanders). The 84 

students (2.62%) who repeated a grade during the time of the study were kept in the dataset. 691 

students were in the classical track, 1285 were in the modern track, 663 students were in the 

technical track and 566 students were in the vocational track. There were slightly more girls 

(53.73%) than boys in the total sample. 9.86% of students in this sample do not speak Dutch at home, 

while 21.40% of student parents in this sample are eligible for allowance fees. There were four 

measurement points through secondary education: the start of secondary education in the first 

grade September 2013 (T0), the end of the first grade May 2014 (T1), the end of the second grade 

May 2015 (T2) and the end of the third grade May 2016 (T3). Between T0 and T1 there was a time 

interval of eight months while the subsequent time intervals were twelve months.  

2.2. Treatment variables  

Of main interest was the effect of going to a higher track on student academic performance, 

compared to going to a lower track. Our sample contained students from the classical track, 

modern track, technical track and vocational track. To discern the effect of each track, pairwise 

comparisons were made of tracks that are consecutive in the hierarchy of tracks. It was not possible 

to compare nonconsecutive tracks, due to the absence of comparable students. Therefore, the 

following three comparisons were made: the classical track with the modern track, the modern 

track with the technical track and the technical track with the vocational track. In each pairwise 

comparison the hierarchically lower track was the control track while the hierarchically higher track 

was the treatment track. Hence, a positive effect would indicate that a hierarchically higher track 

predicts higher academic performance.  

    

2.3. Measures  

2.3.1. Outcome  

The outcome of interest was student academic performance in mathematics. Mathematics 

performance was measured at T0, T1, T2 and T3. The number of items ranged from 32 to 42 and 

encompassed following domains: algebra, geometry, geometric calculation, and data- and 

information processing. The tests were based on educational goals set by the government and are 

considered a valid measurement in the Flemish context. Each test had a mix of multiple-choice and 

open-ended questions. Item Response Theory was used during test development to vertically link, 

test for differential item functioning and select items in a broad range of difficulty parameters with 

high discrimination parameters (Embretson & Reise, 2000). Scoring was done using Warm’s 

weighted likelihood estimation (Warm, 1989) based on a two-parameter model. The reliabilities of 

the tests ranged from 0.83 to 0.87 using Cronbachs’ Alpha. The retest stability between 

measurement occasions ranged from 0.65 to 0.75.   

2.3.2. Baseline covariates  

Although including every variable predicting track assignment seems a safe route to reduce 

selection bias, every included variable decreases the efficiency of the estimators (Golinelli, 
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Ridgeway, Rhoades, Tucker, & Wenzel, 2012; Myers et al., 2011; Pearl, 2010). Hence, matching 

literature suggests using only those variables that predict both the treatment and the outcome of 

interest, in this case learning gains (e.g. Brookhart et al., 2006; Myers et al., 2011). Table 1 gives a 

brief overview of the 25 covariates used during the different matching procedures by giving an 

indication of their theoretical background, their reliability, with what instrument they were 

measured, and their correlation with both mathematics at T3. These variables were measured or 

obtained at T0.  

    

Table 1 Baseline covariates at T0  

 
Variable  Description  Rel.  Info  rmath  Mis  
Math. T0  IRT-score achievement in mathematics T0  .85  AT  .84  .03  
Dutch T0  IRT-score achievement in Dutch T0  .82  AT  .54  .02  
French T0  IRT-score achievement in French T0  .79  AT  .58  .05  
Boy  Binary indicator for boy    OR  .07  .00  

Age  Categorical variable years behind grade    OR    .00  

SES  

Factor score socioeconomic status: based on seven indicators: (1)  
Highest diploma father, (2) Highest diploma mother, (3)  
Employment status father, (4) Employment status mother, (5) 

Occupational level father, (6) Occupational level mother and (7) 

Income.  

.87  PQ  .50  .11  

Allowance  
Binary variable whether family is eligible for an allowance due to 

low income  
  OR  -.25  .00  

Ed.  
mother  

Binary variable whether mother is lowly educated    OR  -.33  .00  

Other 

lang.  
Binary variable whether the home language is not Dutch    OR  -.16  .00  

ASC  
General  

Factor score general academic self-concept based on 4 items  .77  SQ  .30  .04  

ASC Math.  Factor score academic self-concept mathematics based on 6 items  .91  SQ  .47  .04  
ASC Dutch  Factor score academic self-concept Dutch based on 6 items  .86  SQ  .13  .04  
ASC  
French  

Factor score academic self-concept French based on 6 items  .92  SQ  .18  .04  

Wellbeing  Factor score wellbeing based on 9 items  .82  SQ  .05  .04  

Mindset  
Factor score mindset (i.e. if intelligence in considered as static or 

flexible) based on 3 items  
.55  SQ  -.12  .04  

Aut. Mot.  Factor score autonomous motivation based on 4 items  .77  SQ  .01  .04  
Contr. 

Mot.  
Factor score controlled motivation based on 8 items  .81  SQ  -.03  .04  

Beh. Eng.  Factor score behavioral engagement based on 5 items  .78  SQ  .06  .04  
Em. Eng.  Factor score emotional engagement based on 4 items  .77  SQ  .01  .04  
Beh. Dis.  Factor score behavioral disengagement based on 5 items  .68  SQ  -.17  .04  
Em. Dis.  Factor score emotional disengagement based on 6 items  .63  SQ  -.15  .04  
Int. Math.  Sum score interest in mathematics based on 2 items    SQ  .30  .05  

Int. Dutch  Sum score interest in Dutch based on 2 items    SQ  -.04  .05  

Int. French  Sum score interest in French based on 2 items    SQ  .02  .05  

Int. Tech.  Sum score interest in technology based on 2 items    SQ  -.08  .05  
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Note: Rel. = Reliability; Info. = Information source; Mis = % of students with missing data; Math. = Mathematics; 

AT = Achievement Test; OR = Official Records; SQ = Student Questionnaire; PQ = Parent Questionnaire; ASC = 

Academic Self-Concept  

2.4. Area of common support  

A prerequisite for matching students in different tracks is that there is overlap in the distribution of 

the baseline covariates across tracks, called the area of common support. Otherwise, no matching 

procedure can lead to balanced covariates (Austin, 2008). Furthermore, this overlap indicates for 

which (sub)population conclusions can be drawn from the analyses (Bryson, Dorsett, & Purdon, 

2002). The literature primarily focuses on the average treatment effect of the treated (ATT) and the 

local average treatment effect (LATE). In our study, the ATT is the average effect of being in a higher 

track for higher track students. However, if there is no complete overlap in the baseline covariates, 

the ATT cannot be estimated (Stuart, 2010). In our study, this meant that the average effect of the 

higher track could only be estimated for a specific subpopulation, this is the LATE (Imbens, 2010). 

How close a LATE approximates an ATT depends on the area of common support available and the 

matching procedure used. The area of common support is determined by the overlap in propensity 

scores (Steiner & Cook, 2012). We therefore assessed the overlap in the density plots of propensity 

scores of both tracks for each comparison.  

2.5. Matching  

Using matching methods, we first explicitly modeled how students are allocated into different 

tracks, using the aforementioned confounders (Schafer & Kang, 2008). The goal was to find 

comparable students across two consecutive tracks for each combination of confounder values. 

When comparable students were found, a matched dataset of students across tracks with equal 

confounder distributions could be constructed. Hence, any effect of the track could be causally 

ascribed to that track, for track allocation in the matched dataset would be uncorrelated with said 

outcome (i.e. the ignorable treatment assumption; Rubin, 1978; Winship & Morgan, 2007). Exactly 

how track allocation was modeled and how the matched set was constructed depended on the 

specific matching procedure (Stuart, 2010). In this study, several variations on three main matching 

procedures were used to match students: propensity score matching (e.g. Caliendo & Kopeinig, 

2008), Mahalanobis distance matching, and coarsened exact matching (e.g. Iacus et al., 2012). 

These all have the same goal: a dataset with equal confounder distributions across tracks. However, 

they differ in whether either bias reduction or efficiency has priority and to what population the 

inferences apply. We chose for applying different matching methods due to the lack of consensus 

on which matching method is optimal under which conditions (Stuart, 2010). An overview of the 

different matching methods can be found in Table 4.  

After the matching procedures, balance in the matched datasets was assessed through 

standardized mean differences of covariates (SMD’s, SD of lower track as denominator) between 

tracks. We investigated the mean, minimum and maximum of all SMD’s. Mean SMD’s should be no 

higher than 0.05 while SMD’s of specific covariates as a rule of thumb should not exceed 0.25 

(Caliendo & Kopeinig, 2008).  
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2.5.1. Propensity score matching  

Using propensity score matching (PSM), the probability of track allocation was modeled by 

estimating propensities of respondents of being allocated to the higher track. These propensities 

were than used to match respondents across tracks (Rosenbaum & Rubin, 1983). The theoretical 

foundation is that conditional on these propensities, the allocation of students was random 

(Imbens & Rubin, 2015). We used logit models to estimate propensities of higher track assignment, 

with higher track assignment as outcome and a selection of baseline covariates as predictors. Per 

pairwise comparison of tracks and per outcome, baseline covariates were included based on their 

predictive power being larger than a 0.05 correlation for performance at T3 (Austin, 2011; Austin, 

Grootendorst, Normand, & Anderson, 2007; Myers et al., 2011) (see Table 1). Next, matching 

procedures were applied, in which students of both tracks were matched based on their propensity 

scores (e.g. Caliendo & Kopeinig, 2008). We applied two types of matching procedures: nearest 

neighbor caliper matching and full matching.   

Using nearest neighbor caliper matching, a student in the higher track was matched to the student 

in the lower track who had the closest propensity value (Thoemmes & Kim, 2011). A higher tolerance 

of the maximum distance (i.e. the caliper) is more efficient, but also more biased. We used a 0.05SD 

propensity for matching. Further, the number of students that are matched within one matched 

set can vary. Particularly, one lower track student can be matched to a single higher track student, 

or one lower track student can be matched to multiple higher track students (i.e., replacement). 

The latter is less biased, but also less efficient. Therefore, matching with caliper 0.05SD was 

conducted both with and without replacement. Lastly, multiple lower track students within the 

caliper of one higher track student can be matched. Allowing for this multiple matching should 

increase efficiency, but also the bias. Therefore, the matching with caliper 0.05SD was conducted 

both as one-to-one (1:1) matching, one-to-three (1:3) matching and one-to-three (1:3) matching with 

replacement.  

Using full matching, lower track students were matched to higher track students within the same 

propensity score interval (Stuart & Green, 2008). Weights were estimated per interval so that both 

tracks are equally represented per interval. More extreme weights occur in intervals with extreme 

propensities. Therefore, a trade-off is made between limiting the propensity score intervals for 

which weights are estimated and maximizing the number of students in the matched dataset. 

Accordingly, we varied the matching procedures by minimum and maximum propensity score 

included during full matching. We applied both full matching to students with propensity scores 

between 0.05 and 0.95 and full matching to students with propensity scores between 0.10 and  

0.90.  

2.5.2. Mahalanobis distance matching  

In Mahalanobis distance matching (MDM), the selection mechanism is controlled for by matching 

students who have the shortest Mahalanobis distance. This measure of distance is based on the 

covariance matrices estimated on the baseline covariates of both groups (Rosenbaum & Rubin, 

1985). We used the baseline covariates from Table 1. Matching students across tracks on this 

distance metric approximates a stratified random sample. We used a specific variation of this 

method whereby only students within a 0.25 propensity score caliper were considered for MDM 
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(see Rosenbaum & Rubin, 1985, p35). In this implementation, we used 1:1 nearest neighbor 

matching without replacement.  

2.5.3. Coarsened exact matching  

In coarsened exact matching (CEM), the selection mechanism is controlled for by matching 

students across tracks based on coarsened baseline covariates (Iacus et al., 2012). The idea is that 

exact matching on covariates is unnecessary as small differences typically are not meaningful. 

Accordingly, it suffices to match on coarsened covariates to reduce most bias. This matching 

procedure approximates a stratified sample. Coarsening was based on two characteristics of the 

baseline covariates: their predictive power and reliability. For predictive power, the more a 

confounder predicts learning gains by the correlation coefficient, the more bins are created. The 

number of bins was calculated by how many 0.2SD differences in learning gains were predicted by 

the baseline covariate within a 6SD interval. For reliability, the standard error of the variables was 

used to determine which values are different, with 95% certainty. These standard errors were 

derived from a measurement model using either confirmatory factor analysis or item response 

theory. Hence, bins were constructed so that this threshold is not exceeded. Based on both the 

predictive power and reliability, the smallest number of bins resulting from both approaches was 

taken. The resulting bins with both students in the higher and lower track were than reweighted to 

have equal numbers in both tracks.  

2.6. Outcome analyses: GEE and MLGC  

Two methods from different research traditions were used to estimate the effects of being in a 

higher track (McNeish, Stapleton, & Silverman, 2017). Generalized estimating equations (GEE’s) 

account for the design effect on the efficiency of parameter estimates through a correlation matrix 

for sampling units (Hardin, 2002). Multilevel latent growth curve models (MLGC’s) account for 

cluster effects on the efficiencies of parameter estimates by partitioning the variance in 

betweencluster and within-cluster variance (Duncan, Duncan, & Strycker, 2013). Both methods 

were used in this study, for there is no consensus on which method is optimal under which 

conditions (e.g. McNeish, Stapleton, & Silverman, 2016). For both methods the difference in 

academic performance at each time point will be divided by the SD of the lower track in the 

unmatched sample at the start of secondary education. Differences in academic performance 

between tracks at the end of each of the first three years of secondary education will be reported 

as dT1, dT2 and dT3. Interpretation of the effect sizes is by Cohen’s d (Cohen, 1977).  

GEE’s account for clustering in linear regression models by specifying a working correlation matrix 

for the error terms of the sampling units (Robins, Hernan, & Brumback, 2000). We specified an 

independence working correlation matrix to account for the repeated measurements of students 

(Liang & Zeger, 1986). Robust sandwich standard errors were reported, which are valid even if the 

working correlation matrix is misspecified (Joffe, Ten Have, Feldman, & Kimmel, 2004). 

NewtonRaphson was used for parameter estimation. The baseline model is shown below:  

 3 3 

 E Y  T   0  tLowerTrack t 4HigherTrack   
 t 1  t 0  
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𝑌𝑇 represents the average performance if the population would have followed track T at a specific 

time point. β0 indicates average performance at T0 for the lower track. Parameters β1 to β3 

represent the average change in performance for the lower track from time point T1 to T3. β4 to β7 

represent the average difference in performance between the higher and lower track from time 

point T0 to T3. Added to this baseline model are the inverse probability weights resulting from the 

different matching procedures (these weights equal one using 1:1 matching with caliper 0.05SD and 

MDM). Furthermore, covariates used in the propensity score estimation are added to this model as 

well, removing any remaining confounding (i.e. double robustness; Schafer & Kang, 2008). To 

examine the differences between the treatment conditions at each time point, contrasts between 

two conditions were tested using one degree of freedom Wald tests (Kuhn, Weston, Wing, &  

Forester, 2016). The GEE-models were estimated using the geepack 1.2-1 package (Højsgaard, 

Halekoh, & Yan, 2006) in R 3.3.2 while the contrasts were estimated using the contrast package 0.21 

(Kuhn et al., 2016) in R 3.3.2.  

MLGC’s account for clustering by a shared residual for each unit in the same school cluster, 

modeling the heterogeneity in the error terms (e.g. Goldstein, 2011; Hox, 2010; Snijders & Bosker, 

2012). The measured performance at each time point was modeled as deriving from a latent growth 

curve (Curran & Hussong, 2002; Duncan et al., 2013). We specified a latent growth curve where the 

functional form was freely estimated (i.e. a latent basis model; Grimm, Ram, & Hamagami, 2011). 

For parameter estimation we used maximum likelihood with bootstrapped standard errors (using 

the resampling method for clustered data, Asparouhov & Muthén, 2010). The latent growth curve 

model for mathematics is shown in Figure 1.  

  

  

Figure 1. Latent growth curve model mathematics.  

The mean intercept and mean slope were freely estimated, while the intercept variance was also 

freely estimated. The slope variance was constrained to zero, for often during the analyses it would 

be either close to zero or negative after incorporating predictors into the model. The error terms 

were constrained to equality across time points, as is common in the specification of latent growth 

curve models (Singer & Willett, 2003).  
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To compare pairs of tracks, two different latent growth curves were estimated using a multigroup 

model with the two tracks. The differences in learning gains at T1 and T2 were assessed by the 

estimated factor loadings at T1 and T2 multiplied by the estimated slopes. The differences in 

learning gains between tracks at T3 were assessed comparing the estimated slopes. The 

significance was tested by assessing whether the estimate difference between both tracks differed 

significantly from zero. In these models, covariates used during matching were incorporated as 

predictors of the intercept and slope for double robustness (Schafer & Kang, 2008). These models 

were specified in Mplus 7.4 (Muthén & Muthén, 2015).  

2.7. Assessing differential track effects  

Assessing the differences in track effects over time for Mathematics was done by placing equality 

constraints between the track effects in the MLGC-model. Equality constraints were placed 

between dT1 and dT2, between dT2 and dT3 and between dT1 and dT3 for each track comparison. 

Subsequently, the loglikelihood was compared to the unconstrained model. These tested were 

conducted on the datasets resulting from 1:1 matching with caliper 0.05SD.  

Assessing differential track effects across student characteristics was done by estimating track 

effects for different student groups according to a dichotomization of baseline performance, 

propensity score and SES. The means for each of these variables in the datasets resulting from 1:1 

matching with caliper 0.05SD were used to create a dichotomous variable. Hence partitioning the 

two tracks of each comparison in four groups. Subsequently, track effects were jointly estimated 

separately for low and high performance students, low and high SES students, and low and high 

propensity score students. Equality constraints for the track effects were added, and model fit was 

compared to the unconstrained model.  

2.8. Missing data  

In our sample, 3.43% of the data was missing on average at T0 (see Table 1). We used multiple 

imputation by chained equations to attain unbiased and efficient estimates for missing values 

(Schafer & Graham, 2002). Due to schools as clusters in our data, the multilevel pan-approach was 

used during imputation (Lüdtke, Robitzsch, & Grund, 2017). All 25 baseline covariates were included 

in the imputation model (White, Royston, & Wood, 2011). Convergence was reached after 15 

iterations and was determined by the autocorrelation functions and trace plots. Recent literature 

suggests as many imputed datasets as the average missing rate multiplied by ten (Bodner, 2008; 

White et al., 2011). However we played safe by estimating ten imputed datasets, while combining 

their results as described by Rubin's (1987) rules. The relative efficiencies attained (against a perfect 

efficiency of 100%) for the outcomes of interest ranged from 91.04% to 99.79% with an average of 

97.36%. Hence, the results were unlikely to notably differ in precision from the perfect efficiency 

case. The imputations were estimated using the packages mice 2.30 (van Buuren & 

GroothuisOudshoorn, 2011) and pan 1.4 (Zhao & Schafer, 2016) in R 3.3.2.  

Regarding the outcomes of interest, some students were censored due to missingness. 10.55% was 

censored at T1, 4.49% at T2 and 5.93% at T3. To obtain unbiased and efficient estimates, two 

approaches were used to handle censoring, tailored to the two outcomes analysis methods. For 

GEE’s, time-varying inverse probability censoring weights were estimated per time point, with each 
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uncensored student receiving a weight which accounts for comparable censored students (Robins 

et al., 2000). The censoring weights are estimated as a function of the baseline covariates. Due to 

time-varying weights not being useable in MLGC’s, full information maximum likelihood (FIML; 

Enders & Bandalos, 2001) was incorporated into the estimation of the parameters, yielding efficient 

and unbiased estimates. FIML is also generally considered a superior approach. The censoring 

weights were estimated using the ipw 1.0-11 package (van der Wal & Geskus, 2011) in R 3.3.2. FIML 

is a part of the estimation procedure of latent growth curves in Mplus 7.4 by using maximum 

likelihood (Raykov, 2005).  
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3. Results  

3.1. Track differences before matching  

Table 2 shows the distribution for each baseline covariate per track, while the last three columns 

show the SMD’s between each of the track comparisons. Overall, the hierarchy in tracks from 

classical, modern, technical to vocational is reflected in the differences in academic performance, 

socio-economic status and academic self-concept. Moreover, there is a general trend of the lower 

tracks attracting more students who speak no Dutch at home. Interestingly, there is a substantially 

larger difference in mathematics performance between the technical and vocational track, relative 

to the difference between the other two track comparisons.  

Table 2 Differences between tracks in baseline covariates and standardized differences between tracks  

Baseline covariate  
Classical  Modern  Technical  Vocational  Comp1  Comp2  Comp3  
M  SD  M  SD  M  SD  M  SD  SMD  SMD  SMD  

Math. T0  0.86  0.61  0.30  0.61  -0.20  0.63  -1.51  0.67  0.92  0.79  1.96  
Dutch T0  0.88  0.83  0.12  0.84  -0.50  0.81  -0.77  0.78  0.90  0.77  0.35  
French T0  0.80  0.73  0.26  0.74  -0.36  0.76  -1.15  0.83  0.73  0.82  0.95  

   
Gender (boy)  

  
0.40  

  
0.49  

  
0.42  

  
0.49  

  
0.56  

  
0.50  

  
0.53  

  
0.50  

  
-0.04  

  
-0.28  

  
0.06  

Age  -0.04  0.27  0.08  0.30  0.17  0.38  0.46  0.50  -0.40  -0.24  -0.58  

  
SES  

  
0.76  

  
0.88  

  
0.13  

  
0.88  

  
-0.29  

  
0.75  

  
-0.89  

  
0.83  

  
0.72  

  
0.56  

  
0.72  

Allowance  0.09  0.29  0.18  0.38  0.25  0.43  0.40  0.49  -0.24  -0.16  -0.31  
Ed. mother  0.05  0.22  0.14  0.35  0.19  0.39  0.47  0.50  -0.26  -0.13  -0.56  
Other lang.  0.05  0.23  0.10  0.30  0.07  0.25  0.18  0.38  -0.17  0.12  -0.29  

  
ASC General  

  
0.55  

  
0.81  

  
0.03  

  
0.93  

  
-0.34  

  
0.96  

  
-0.34  

  
1.10  

  
0.56  

  
0.39  

  
0.00  

ASC Math.  0.47  0.82  0.06  0.93  -0.25  1.01  -0.42  1.08  0.44  0.31  0.16  
ASC Dutch  0.39  0.88  0.04  0.94  -0.24  0.99  -0.30  1.10  0.37  0.28  0.05  
ASC French  

  

0.50  

  

0.78  

  

0.08  

  

0.94  

  

-0.31  

  

0.96  

  

-0.43  

  

1.10  

  

0.45  

  

0.41  

  

0.11  

  

Wellbeing  0.18  0.94  -0.04  0.95  -0.05  1.02  -0.07  1.12  0.23  0.01  0.02  
Mindset  

   

-0.17  

  

1.06  

  

-0.05  

  

0.98  

  

0.05  

  

0.99  

  

0.27  

  

0.93  

  

-0.12  

  

-0.10  

  

-0.24  

  

Aut. Mot.  0.18  0.93  -0.13  0.96  -0.02  1.04  0.08  1.08  0.32  -0.11  -0.09  
Contr. Mot.  -0.04  1.00  0.01  0.94  -0.10  1.04  0.14  1.07  -0.05  0.11  -0.22  

   
Beh. Eng.  

  
0.16  

  
0.91  

  
-0.03  

  
0.98  

  
-0.06  

  
1.02  

  
-0.05  

  
1.10  

  
0.19  

  
0.03  

  
-0.01  

Em. Eng.  0.15  0.96  -0.07  0.96  -0.07  1.02  0.06  1.08  0.23  0.00  -0.12  
Beh. Dis.  -0.27  0.95  -0.02  0.94  0.07  0.98  0.29  1.13  -0.27  -0.09  -0.19  
Em. Dis.  

   

-0.20  

  

0.91  

  

0.00  

  

0.93  

  

0.02  

  

1.04  

  

0.23  

  

1.16  

  

-0.22  

  

-0.02  

  

-0.18  
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Interest Math.  0.23  0.90  0.04  0.97  -0.13  1.01  -0.22  1.11  0.20  0.17  0.08  
Interest Dutch  0.14  0.96  -0.02  0.96  -0.11  1.01  0.01  1.10  0.17  0.09  -0.11  
Interest French  0.29  0.88  0.00  0.97  -0.22  0.99  -0.10  1.12  0.30  0.22  -0.11  
Interest Tech.  -0.28  1.04  -0.13  0.97  0.27  0.93  0.33  0.93  -0.15  -0.43  -0.06  

Note: Math. = Mathematics; Ed. = education; Lang. = Language; ASC = Academic Self-Concept; Aut. =  
Autonomous; Contro. = Controlled; Beh = Behavioral; Eng = Engagement; Em. = Emotional; Dis = 

Disengagement, Tech = Technology; Comp1 = difference classical and modern track; Comp2 = difference 

modern and technological track; Comp3 = difference technological and vocational track  

  

Table 3 describes the LGCM’s across tracks, describing per track the mean baseline performance at 

T0, mean performance at T1, mean performance at T2, mean performance at T3 and amount of 

growth between T0 and T3. The fit indices for this model were satisfactory for Mathematics (CFI = 

0.984, TLI = 0.984, RMSEA = 0.063). Constraining the slope to equality across all tracks yielded no 

significantly worse fit for mathematics (χ2(3, N = 3205) = 1.202, p = 0.753), indicating comparable 

mean learning gains across tracks between T0 and T3.  

Table 3 Multilevel latent growth curves Mathematics four tracks  

Track  

  Mathematics    

MT0  
(SE)  

MT1  
(SE)  

MT2  
(SE)  

MT3  
(SE)  

SL (SE)  

classical  
0.86  

(0.06)  
0.98  

(0.06)  
1.14  

(0.06)  
1.51  

(0.07)  
0.65  

(0.05)  

modern  
0.30  

(0.05)  
0.41  

(0.05)  
0.63  

(0.06)  
0.96  

(0.05)  
0.65  

(0.03)  

technical  
-0.19  
(0.06)  

-0.08  
(0.07)  

-0.01  
(0.09)  

0.46  
(0.09)  

0.64  
(0.05)  

vocational  
-1.50  
(0.06)  

-1.36  
(0.06)  

-1.01  
(0.05)  

-0.82  
(0.05)  

0.68  
(0.05)  

Note: MT0 - MT3 = Estimated mean achievement at T0 – T3 according to latent  
growth curve; SL = Slope as mean achievement growth between T0 and T3  

  

In Figure 2 three pairs of density plots are shown, one pair for each track comparison. The x-axis 

shows the logit propensities of going to the higher track predicted by the mathematics propensity 

score model. The area of common support can be described as the percentage of higher track 

students for who there is at least one lower track student with an equal or lower propensity score. 

For 94.07% of classical track students there was at least one comparable modern track student, 

while for 94.09% of modern track students there was at least one comparable technical track 

student and for 91.05% of technical track students there was at least one comparable vocational 

track student. Table 5, 6 and 7 show how many students were matched per matching procedure 

per track comparison, with almost all having enough matches to conduct outcome analyses. Only 

CEM for the technical and vocational track comparison did not yield enough matches, thus no 

analyses on this matched dataset were conducted.  
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Figure 2. Overlap propensity scores in pairwise comparisons of tracks  

In short, the baseline covariates and assessment of overlap between tracks showed that 

differences in student selection exist across tracks. However, they also showed a substantial area 

of common support between tracks, a required condition for any matching procedure. Although 

the overlap between the technical and vocational track was smaller, matched comparisons were 

almost always possible.  

3.2. Produced samples after matching  

Critical to the samples produced by the matching procedure is balance, which we assessed with 

SMD’s and differences in propensity scores. Table 4 shows the mean, minimum and maximum of all 

SMD’s, as well as the mean difference in propensity scores for each matching procedure and track 

comparison.  

Table 4 Indicators of remaining selection bias after application of matchings procedures  

Matching 

procedure  

Classical & modern  Modern & technical  Technical & vocational  

Md  Mps  mind  maxd  Md  Mps  mind  
max 

d  Md  Mps  mind  maxd  

Cal. 0.05 1:1  0.01  0.01  -0.07  0.05  0.02  0.01  -0.08  0.09  0.04  0.01  -0.16  0.25  
Cal. 0.05 rep.  0.00  0.00  -0.10  0.16  0.03  0.00  -0.21  0.28  -0.03  0.00  -0.31  0.29  
Cal. 0.05 1:3  0.00  0.00  -0.09  0.12  0.03  0.00  -0.18  0.29  -0.01  0.00  -0.31  0.30  
Full .05-.95  0.01  0.01  -0.07  0.05  0.00  0.00  -0.22  0.11  0.04  0.00  -0.28  0.33  
Full .10-.90  -0.01  0.00  -0.13  0.14  0.01  0.00  -0.19  0.17  0.00  0.00  -0.29  0.18  

Maha.  0.03  0.05  -0.09  0.13  0.07  0.06  -0.04  0.23  0.05  0.07  -0.13  0.30  
CEM  0.04  NA  0.00  0.26  0.07  NA  0.00  0.18  NA  NA  NA  NA  

Note: Md = mean SMD between tracks; Mps = mean propensity score difference between tracks; mind = minimum 

SMD between tracks; mind = maximum SMD between tracks   

  

Across all matching procedures and comparisons, the mean SMD’s were under the 0.05 threshold. 

However, it was slightly exceeded for CEM and MDM in the modern and technical track comparison. 

Using caliper matching and full matching, the mean propensity score difference between tracks is 

always close to zero for each criterion used. Thus, satisfactory balance is achieved between tracks 

per comparison.  
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Across the three track comparisons and matching procedures, the classical and modern track 

comparison have SMD’s under the 0.25 threshold, except when using CEM. For the modern and 

technical track comparison, all SMD’s are under 0.25, except for 1:1 matching with caliper 0.05SD 

with replacement and 1:3 matching with caliper 0.05SD with replacement. For the technical and 

vocational track comparison, the SMD’s point to difficulties with the matching procedures. For only 

matching with caliper 0.05SD has all SMD’s under the 0.25 threshold. This is likely due to strong 

differences between these tracks impeding the success of the matching procedure (Steiner & Cook, 

2013). Hence, caution is needed when making inferences for the technical and vocational track 

comparison.  

Although all matching procedures reach balance in mean SMD, except CEM, the resulting matched 

sets have different mean propensities of being in a higher track. Tables 5, 6 and 7 show the mean 

propensities per track per matched sample. Across the three comparisons matching with caliper 

0.05SD has the lowest propensities, adding replacement heightens the propensities, while allowing 

for multiple matches causes no change. Full matching has higher mean propensities, trending 

higher when allowing more extreme propensities into the weighting scheme. MDM usually yields 

propensities somewhat comparable to 1:1 nearest neighbor 0.05 caliper matching  

Another difference is the number of students in the matched samples, also shown in Tables 5, 6 and 

7. matching with caliper 0.05SD produces the smallest matched sets. Allowing for replacement 

increases the number of students in the higher track, but lowers the number of students in the 

lower track. Allowing multiple matches increases the number of students in the lower tracks. Full 

matching with students between 0.05 and 0.95 propensity score yields the largest sample sizes. 

Full matching with students between 0.10 and 0.90 propensity score reduces the number of 

matches. MDM attains datasets comparable to matching with caliper 0.05SD. The number of 

matched students differs strongly for CEM, though it is generally small.  

3.3. Analysis of track effects  

The treatment effects of the three pairwise comparisons of a higher track versus a lower track are 

presented in the following sections. For each comparison, the difference in mean value between 

both tracks at T1 (only mathematics), T2 (only mathematics) and T3 are estimated using both GEE’s 

and MLGC’s. The results of the pairwise comparisons of the classical and modern track, the modern 

and technical track, and the technical and vocational track are shown in Tables 5, 6 and 7 

respectively. Figure 3 shows the growth curves of these comparisons for matching with caliper  

0.05SD. In the following paragraphs, we discuss the general trends in each pairwise comparison.  

For the classical and modern track comparison, all positive effects of being in a higher track on 

mathematics range from d = 0.19 to d = 0.29 at T1, from d = 0.12 to d = 0.20 at T2 and from d = 0.12 

to d =0.22 at T3 using GEE’s, with MLGC’s yielding similar results. However, significance is not always 

reached, even for comparable effect sizes.  
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Table 5 Differences classical and modern track in matched sample at T1, T2 and T3  

(SE)  
 mod.  440  .43  (.05)  (.08)  (.06)  (.08)  (.11)  (.09)  

Cal. .05 with rep.  
clas. 

mod.  
656  
344  

.55  

.55  
.22* 

(.06)  
.14  

(.09)  
.14  

(.08)  
.23* 

(.09)  
.17  

(.12)  
.16  

(.10)  
Cal. .05 

1 to 3  
clas. 

mod.  
656  
623  

.55  

.55  
.22* 

(.06)  
.13  

(.08)  
.14* 

(.07)  
.23* 

(.08)  
.17  

(.12)  
.17  

(.10)  
Full 

.05 .95  
clas. 

mod.  
663  

1079  
.57  
.57  

.21* 

(.06)  
.12  

(.08)  
.12  

(.08)  
.19* 

(.09)  
.15  

(.12)  
.12  

(.11)  
Full 

.10 .90  
clas. 

mod.  
600  
847  

.55  

.55  
.28* 

(.06)  
.16  

(.10)  
.22* 

(.08)  
.31* 

(.08)  
.22  

(.13)  
.25* 

(.11)  

Maha.  
clas. 

mod.  
486  
486  

.46  

.42  
.26* 

(.05)  
.15* 

(.07)  
.21* 

(.06)  
.23* 

(.07)  
.13  

(.10)  
.19* 

(.08)  

CEM  
clas. 

mod.  
481  
315  

NA  
NA  

.19* 

(.07)  
.18* 

(.08)  
.20* 

(.07)  
.18* 

(.06)  
.17  

(.10)  
.19*  

(0.07)  

 
Note. N = number of students in matched set per track; GEE = Generalized estimating equations estimates;  
MLGC = multilevel latent growth curve model estimates; clas. = classical track; mod. = modern track; Mps = 

Mean propensity score; dT1 – dT3 = Difference between high track and low track divided by standard deviation 

low track at T0 – T3 ; NA = Not applicable. * Significant at α = 0.05  

For the modern and technical track comparison, all effects on mathematics range from d = 0.19 to d = 

0.25 at T1, from d = 0.43 to d = 0.52 at T2 and from d = 0.14 to d =0.27 at T3 using GEE’s, with MLGC’s 

yielding similar results, though in some cases slightly lower. However, significance is not always 

reached, even for comparable effect sizes.  

Table 6 Differences modern and technical track in matched samples at T1, T2 and T3  

Matching procedure Track N MPS dT1 dT2 dT3 dT1 dT2 dT3  

 mod.  417  .58  
Cal. .05  

 tech.  417  .57  (.05)  (.07)  (.06)  (.09)  (.15)  (.10)  

Cal. .05 with rep.  
mod. 

tech.  
1285 

349  
.77  
.77  

.20* 

(.07)  
.43* 

(.09)  
.14  

(.10)  
.16  

(.15)  
.40  

(.24)  
.12  

(.17)  
Cal. .05 

1 to 3  
mod. 

tech.  
1285 

497  
.77  
.77  

.20* 

(.07)  
.44* 

(.09)  
.14  

(.10)  
.17  

(.16)  
.41  

(.24)  
.12  

(.18)  
Full 

.05 .95  
mod. 

tech.  
1045 

642  
.73  
.73  

.21* 

(.07)  
.44* 

(.09)  
.17  

(.09)  
.18  

(.10)  
.37* 

(.17)  
.13  

(.11)  

Mathematics 

GEE  
 

MLGC  

Matching procedure   Track   

Mathematics   

N   M PS   
GEE   MLGC   

d T1   
( SE )   

d T2   
( SE )   

d T3   
( SE )   

d T1   
( SE )   

d T2   
( SE )   

d T3   

Cal.  . 05   
clas.   440   .44   .29*   .2 0 *   .22*   .27*   .2 0   .2 0 *   

( SE )   ( SE )   ( SE )   ( SE )   ( SE )   ( SE )   
.2 0 *   .52*   .25*   .17   .47*   .23*   
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Full 

.10 .90  
mod. 

tech.  
850  
582  

.68  

.68  
.20* 

(.07)  
.47* 

(.10)  
.27* 

(.08)  
.15  

(.08)  
.38* 

(.16)  
.22* 

(.09)  

Maha.  
mod. 

tech.  
454  
454  

.61  

.55  
.19* 

(.05)  
.50* 

(.06)  
.27* 

(.06)  
.12  

(.09)  
.40* 

(.14)  
.22* 

(.09)  

CEM  
mod. 

tech.  
824  
514  

NA  
NA  

.25* 

(.07)  
.45* 

(.10)  
.24* 

(.07)  
.20  

(.10)  
.41* 

(.19)  
.22* 

(.09)  

 
Note. N = number of students in matched set per track; GEE = Generalized estimating equations estimates;  
MLGC = multilevel latent growth curve model estimates; mod. = modern track; tech. = technical track; Mps = 

Mean propensity score; dT1 – dT3 = Difference between high track and low track divided by standard deviation 

low track at T0 – T3 ; NA = Not applicable. * Significant at α = 0.05  

For the technical and vocational track comparison, all effects on mathematics range from d = 0.52 

to d = 0.69 at T1, from d = 0.31 to d = 0.49 at T2 and from d = 0.68 to d =0.85 at T3 using GEE’s. 

MLGC’s yield similar results in general, with some unsystematic differences. Significance is mostly 

reached, but not always.  

Table 7 Differences technical and vocational track in matched samples at T1, T2 and T3  

 
Note. N = number of students in matched set per track; GEE = Generalized estimating equations estimates;  
MLGC = multilevel latent growth curve model estimates; tech. = technical track; voc. = vocational track; Mps = 

Mean propensity score; dT1 – dT3 = Difference between high track and low track divided by standard deviation 

low 

track 

at T0 – 

T3; 

NA = 

Not 

applicable. * Significant at α = 0.05  

3.4. Sensitivity analyses of track effects  

Sensitivity analyses of possible departures from the ignorable treatment assumption were 

conducted on the estimated track effects. We used Vanderweele & Arah's (2011) procedure. This 

meant assessing how strongly an unobserved confounder needs to differ between tracks to 

completely explain the observed track effect. This was investigated for a hypothetical unobserved 

confounder which has a relationship of small effect size (r = 0.2), a moderate effect size (r = 0.4) or 

 voc.  134  .51  (.12)  (.10)  (.11)  (.18)  (.13)  (.14)  

Cal. .05 with rep.  
tech. 

voc.  
294  
106  

.70  

.70  
.67* 

(.13)  
.49* 

(.17)  
.78* 

(.15)  
.66* 

(.33)  
.56* 

(.25)  
.80* 

(.26)  
Cal. .05 

1 to 3  
tech. 

voc.  
294  
165  

.70  

.70  
.66* 

(.13)  
.46* 

(.15)  
.78* 

(.14)  
.74* 

(.30)  
.60* 

(.26)  
.83* 

(.28)  
Full 

.05 .95  
tech. 

voc.  
334  
290  

.73  

.72  
.65* 

(.15)  
.44* 

(.16)  
.74* 

(.15)  
.76* 

(.23)  
.58* 

(.22)  
.83* 

(.24)  
Full 

.10 .90  
tech. 

voc.  
227  
226  

.65  

.65  
.52* 

(.12)  
.31* 

(.12)  
.68* 

(.10)  
.41* 

(.11)  
.39* 

(.12)  
.67* 

(.09)  

Maha.  
tech. 

voc.  
153  
153  

.55  

.48  
.68* 

(.09)  
.38* 

(.10)  
.85* 

(.09)  
.48* 

(.08)  
.23* 

(.08)  
.67* 

(.07)  

CEM  
tech. 

voc.  
NA  
NA  

NA  
NA  

NA  NA  NA  NA  NA  NA  

Matching procedure   Track   

Mathematics   

N   M PS   
GEE   MLGC   

d T1   
( SE )   

d T2   
( SE )   

d T3   
( SE )   

d T1   
( SE )   

d T2   
( SE )   

d T3   
( SE )   

Cal. .05   tech.   134   .52   .69*   .43*   .84*   .60*   .39*   .76*   



29  

  

a large effect size (r = 0.6). These sensitivity analyses were performed for each track effect. For 

brevity only those for matching with caliper 0.05SD and MLGC’s as outcome analyses are reported. 

Concerning the classical and modern track comparison, an unobserved confounder with a 

moderate (small/large) relation to mathematics at T3 needs to differ between both tracks with a 

SD of 0.5 (1.0/0.3). Concerning the modern and technical track comparison, an unobserved 

confounder with a moderate (small/large) relation to mathematics at T3 needs to differ between 

both tracks with a SD of 0.6 (1.2/0.4). Concerning the technical and vocational track comparison, an 

unobserved confounder with a moderate (small/large) relation to mathematics at T3 needs to differ 

between both tracks with a SD of 1.9 (3.8/1.3).  

3.5. Differences in track effects over time  

For the classical and modern track comparison no significant differences in track effects over time 

were found. However, the modern and technical track comparison does show that dT2 is larger 

than dT1 (F(1,430) = 4.12, p < .05) and that dT2 is larger than dT3 (F(1,430) = 2.05, p < .05). However, 

there is no significant difference between dT1 and dT3 (F(1,430) = 0.93, p < .05). For the technical 

and vocational track comparison, dT1 is significantly larger than dT2 (F(1,430) = 2.08, p < .05) and 

dT3 is significantly larger than dT2 (F(1,430) = 2.31, p < .05), but there is no significant difference 

between dT1 and dT3. However, when applying different matching procedures, some of these 

effects are insignificant, even when the effect size is comparable.  

  

Figure 3. Mathematics development in matched datasets.  

3.6. Differences in track effects over student groups  

Table 8 shows the track effects for each track comparison per student group, with the differences 

in track effects between groups shown as well. No difference in track effects between groups is 

found to be significant.  

    

Table 8  

Effect modification of track effects in matched samples at T1, T2 and T3  
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   Group  
 dT1  dT2  dT3  dT1  dT2  dT3  dT1  dT2  dT3  

 (SE)  (SE)  (SE)  

 high  .25  .23  .63*  

Aca.  
Perf.  low  

(.10)  
.21*  
(.09)  

(.14) 
.15  

(.12)  

(.11) 
.11  

(.10)  

(.16)  
.34*  
(.09)  

(.26)  
.59*  
(.12)  

(.15)  
.35*  
(.10)  

(.24)  
.67*  
(.23)  

(.19)  
.54*  
(.24)  

(.23)  
1.07*  
(.29)  

 high - low  
.08  

(.12)  
.05  

(.18)  
.13  

(.13)  
-.34* 

(.16)  
-.31  
(.23)  

-.26  
(.17)  

-.41  
(.34)  

-.31  
(.30)  

-.44  
(.43)  

PS  

high low  

.26*  
(.10)  
.26*  
(.08)  

.24  
(.14) 
.15  

(.12)  

.20  
(.13)  
.19*  
(.10)  

.11  
(.11) 
.22  

(.11)  

.37  
(.20)  
.51*  
(.15)  

.16  
(.13)  
.33*  
(.11)  

.39  
(.27)  
.63*  
(.3)  

.36  
(.24) 
.46  

(.24)  

.72*  
(.33)  
.89*  
(.25)  

 
high - low  

-.01  
(.11)  

.08  
(.16)  

.01  
(.15)  

-.11  
(.14)  

-.14  
(.19)  

-.18  
(.15)  

-.23  
(.45)  

-.10  
(.30)  

-.17  
(.46)  

SES  

high low  

.29*  
(.11)  
.28*  
(.11)  

.27  
(.17) 
.19  

(.13)  

.22  
(.14)  
.24*  
(.12)  

.21  
(.12) 
.11  

(.10)  

.37  
(.19)  
.57*  
(.13)  

.26  
(.15) 
.19  

(.10)  

.65*  
(.24) 
.57  

(.34)  

.43  
(.23) 
.32  

(.26)  

.72*  
(.27)  
.87*  
(.28)  

 
high - low  

.01  
(.14)  

.08  
(.18)  

-.01  
(.16)  

.1  
(.14)  

-.20  
(.16)  

.06  
(.15)  

.08  
(.43)  

.11  
(.36)  

-.15  
(.38)  

 
Note. dT1 – dT3 = Difference between high track and low track divided by standard deviation low track at T0 – T3; 

low = lower performing half of both tracks; high = higher performing half of both tracks; low - high = difference 

track effects between low and high groups. * Significant at α = 0.05  

However, assessing the standard errors in Table 8 shows that statistical power is only adequate to 

distinguish medium to large effects per time point. To increase statistical power, we tested the null 

hypothesis whether the difference in track effects for mathematics across all three time points are 

significantly different from zero. Comparing low versus high performing students only for the 

modern and technical track comparison a significant effect was found (F(1,830) = -2.04, p < .05) with 

mean ES = -0.25. This shows that the effect of the modern track versus the technical track is stronger 

for low academic performance students than high academic performance students. However, for 

all other comparisons no significant effect was found.  

  

    

4. Discussion  

This study investigated whether tracks affect academic performance for mathematics during the 

first three years of Flemish secondary education. Academic performance was compared between 

four tracks: the classical, the modern, the technical and the vocational track. First, students were 

Classical and modern  Modern and technical  Technical and vocational  

Mathematics  Mathematics  Mathematics  

( SE )   ( SE )   ( SE )   ( SE )   ( SE )   ( SE )   
.28*   .20   .24*   .00   .27   .09   
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matched across every pair of tracks which are hierarchically consecutive. Second, the academic 

performance for comparable students across pairs of tracks was assessed. Supporting our 

hypothesis, positive effects of going to a higher track were found without exception.  

However, a more nuanced picture is revealed when assessing effects sizes, how they differ 

between the different track comparisons and over time. At the end of the third year we found two 

small track effects (d = 0.20 and d = 0.23) and one large effect (d = 0.76). Our results showed that 

these track effects do not differ according to student characteristics. However, our study did reveal 

that for two out of three track comparisons there were significant differences in the track effects 

over time. Between the end of the first year and the end of the third year though, there was no 

significant difference in track effect. This indicates that the benefit of being in a higher track for 

mathematics does not expand over time (Figure 3 illustrates this). Relatedly, when assessing the 

difference in relative learning gain (the learning gain in the lower track divided by the learning gain 

in the higher track), the advantage of being in the higher track diminishes over time. For example, 

in the classical and modern track comparison, the relative learning gain of the lower track is only 

16%, while at the end of the third year this rises to 81%. A comparable trend was found for the other 

track comparisons (57% to 82% and -3% to 43%). In sum, the effect size of being allocated to a higher 

track differs over time and track comparisons, indicating that there is no single track effect within 

an education system. Moreover, comparison of the relative learning gains reveals that the track 

effect on academic performance may be limited over time in a relative sense.  

The heterogeneity in our effect sizes raises the question how these compare to the effect sizes of 

other quasi-experimental studies on track effects. Becker et al. (2012) and Guill et al. (2016) 

respectively found average effect sizes of 0.40 and 0.31 when comparing an academic to a 

nonacademic track across four years for intelligence development. Our own average effect size at 

the end of the third year of 0.40 across all track comparisons and matching methods is very alike. 

Somewhat small compared to our own average effect size, Retelsdorf et al. (2012) found an effect 

size of 0.21 for decoding speed and a non-significant effect for reading comprehension which they 

deemed too small to even mention. However, given the heterogeneity in our own results, such 

heterogeneity across studies on different tracking systems does not seem strange. In sum, the 

effect sizes in our study generally resemble the findings of prior quasi-experimental studies on track 

effects.  

Given the results of our and former quasi-experimental studies, the argument that track effects 

cause selective systems to have higher inequality than comprehensive systems is given more 

weight. For the explanation is that tracks exacerbate already existing differences in academic 

performance due to the higher tracks benefitting student academic performance (e.g. Brunello & 

Checchi, 2007). Based on our study, this argument is certainly plausible for Flemish education.  
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5. Limitations and strengths  

The main goal of matching is to reduce selection bias for causal inferences, its success the ignorable 

treatment assumption (Rosenbaum & Rubin, 1983). If after a matching procedure a confounder 

remains that predicts both track assignment and the outcome, the track effect is biased through 

that confounders’ effect. Thus, a track effect can only be attributed to a track if all relevant selection 

bias due to confounders is removed (Steiner & Cook, 2012). We applied different matching methods 

to see whether this mattered for bias reduction. All methods yielded comparable effect sizes, 

indicating that the choice for a specific matching method to reduce selection bias is somewhat 

trivial in this study. Furthermore, we investigated the tenability of the ignorable treatment 

assumption through sensitivity tests of the treatment effect (Caliendo & Kopeinig, 2008; 

Vanderweele & Arah, 2011) across track comparisons. Generally, we found that small effects could 

still be somewhat plausibly explained by an unobserved confounder. However, track effects of 

moderate size or larger could not be plausibly explained by an unobserved confounder in our view. 

If considering the track effect at the end of the third year, this means three out of six track effects 

are robust for unobserved confounding.  

Any estimate deriving from a matched dataset is also limited in inference to the area of common 

support for which enough statistical power exists in both groups (Stuart, 2010). Initially, for 91% to 

94% of students in the higher track a comparable student was found in the lower track across the 

three pairwise comparisons. Although not allowing for estimating the average treatment effect for 

the treated, having more than 90% of the higher track represented in a matched dataset seems 

intuitively close. However, while the different matching methods attain comparable effect sizes, 

the standard errors of these effects differ. Generally, those matching methods that apply greater 

weights, in order to resemble the higher track population, do this at a cost of efficiency (i.e. full 

matching and caliper matching with replacement). Hence, we are cautious in making inferences on 

the effect of being in a higher track for the entire higher track population (the ATT). We think our 

inferences can only apply to a population of students who are adequately represented in each track 

(the LATE). This limitation in the area of common support is not unique to his study, for comparable 

studies on track effects show even smaller overlap in propensity scores (e.g. Becker et al., 2012; 

Guill et al., 2016; Retelsdorf et al., 2012).  

Analyzing the differences in outcomes due to track effects also required a model to describe 

learning gains. Discussion remains under which conditions multilevel models or GEE’s are preferable 

(e.g. McNeish, Stapleton, & Silverman, 2016). Furthermore, discussion within the matching 

literature on the estimation of standard errors is also ongoing (Abadie & Imbens, 2008). Due to a 

lack of consensus in the literature, we choose to apply both MLGC’s with bootstrapped standard 

errors and autoregressive GEE models. Interestingly, both methods yielded close results for effect 

sizes, with MLGC’s having substantially larger standard errors. Even though we cannot answer 

which method gives the correct assessment of standard errors, we consider their accordance in 

effect sizes a strength of this study. Hence, applying either solely MLGC’s or solely GEE’s would have 

led to the same conclusions in our study.  
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As in any study we were limited by our data, with only one academic performance indicator 

available across a three-year span. With some irony this limitation seems more important given our 

own results, which show that describing the functional form of longitudinal learning gains can lead 

to a more nuanced interpretation. However, our own data do not allow for assessing how the track 

effect changes after the first three years of secondary education. Perhaps more limiting is that our 

performance indicator, mathematics performance, only offers a narrow view on student’s 

academic performance. Indeed, the main rationale behind tracking is that different tracks offer skill 

development in different areas (e.g. Bol & van de Werfhorst, 2013). Correspondingly, it seems 

necessary to assess this specific claim. If different tracks are meant to prepare for different 

demands of the labor market, it should be evaluated whether different tracks do adequately 

prepare students for these different demands.  

  

6. Conclusion  

Assessing whether tracks affect academic performance for mathematics auring the first three years 

of Flemish secondary education revealed that being allocated to a higher track is beneficial for 

academic performance. A comparison of these effects reveals that the effect size differs over time 

and track comparisons, but not according to student characteristics. Interestingly though, the gap 

caused by the track effect does not enlarge over time. These results are in line with former research 

on track effects, giving further credence to the argument that tracks are responsible for 

exacerbating differences in academic performance.  
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