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Beleidssamenvatting 

In het Vlaamse secundair onderwijs zijn er vier onderwijsvormen: het algemeen secundair onderwijs 

(aso), het technisch secundair onderwijs (tso), het beroepssecundair onderwijs (bso) en het 

kunstsecundair onderwijs (kso). Binnen het aso wordt daarbij vaak een onderscheid gemaakt 

tussen klassieke talen en moderne studierichtingen. Deze onderwijsvormen worden pas formeel 

ingericht vanaf de tweede graad van het secundair onderwijs. In de praktijk spreken leerlingen, 

ouders en scholen al in termen van onderwijsvormen in de eerste graad. In heel wat scholen zijn de 

onderwijsvormen reeds ‘te herkennen’ in het onderwijsaanbod van de eerste graad. In het tweede 

leerjaar van de eerste graad worden namelijk basisopties ingericht die aansluiten op deze 

onderwijsvormen. De meeste scholen gebruiken het keuzegedeelte en de basisopties in de eerste 

graad ook als voorbereiding op de onderwijsvormen in de bovenbouw. In de eerste graad bereiden 

het eerste leerjaar B en het beroepsvoorbereidend leerjaar voor op het bso. 

Bij beleidsmakers is er discussie over mogelijke effecten van deze onderwijsvormen op schoolse 

prestaties. Voorstanders argumenteren dat onderwijsvormen die aansluiten op de vaardigheden 

en interesses van leerlingen de schoolse prestaties van leerlingen verbeteren. Tegenstanders 

argumenteren echter dat sociale ongelijkheid in schoolse prestaties tussen leerlingen versterkt 

wordt doordat de onderwijsvormen verschillen in hun mogelijkheden tot leerwinst. Deze discussie 

wordt verder bemoeilijkt door het hoge aantal leerlingen die doorheen het secundair onderwijs van 

onderwijsvorm veranderen. Daarom wordt ook de vraag gesteld wat de effecten zijn van het 

veranderen van onderwijsvorm.  

In wetenschappelijk onderzoek wordt het inrichten van verschillende onderwijsvormen tracking 

genoemd. Er zijn diverse studies die onderwijssystemen met vroege tracking (categoriale 

onderwijssystemen) vergelijken met onderwijssystemen met late tracking (eerder comprehensieve 

onderwijssystemen). Deze studies tonen over het algemeen geen helder positief of negatief effect 

van tracking op de gemiddelde schoolse prestaties van onderwijssystemen. Een meerderheid van 

deze studies toont wel dat tracking de sociale ongelijkheid in schoolse prestaties versterkt, maar 

het effect is doorgaans beperkt. Studies die onderwijssystemen vergelijken beschrijven echter 

alleen gemiddelde verschillen tussen groepen van onderwijssystemen. De internationaal 

vergelijkende studies gaan dus niet in op de precieze effecten van de (gepercipieerde) hiërarchie 

tussen tracks binnen een land. Onderzoek naar de effecten van verandering van track zijn ook 

beperkt. In dit rapport willen we daarom inzoomen op de effecten van tracking binnen Vlaanderen, 

waarbij we specifiek aandacht hebben voor leerlingen die van track veranderen omdat zulke 

‘watervalloopbanen’ kenmerkend zijn voor het Vlaamse secundair onderwijs. 

Dit onderzoek sluit aan op twee eerdere studies naar de effecten van onderwijsvormen op schoolse 

prestaties (SONO/2017.OL1.1_12) en academisch zelfconcept (SONO/2017.OL1.1_13) tijdens de eerste 

drie jaar van het secundair onderwijs. In beide studies werd een vergelijking gemaakt tussen 

leerlingen die in verschillende onderwijsvormen zaten maar gelijke prestaties, sociaaleconomische 
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achtergrond en non-cognitieve uitkomsten hadden aan de start van het secundair onderwijs. In de 

studie over schoolse prestatie vonden we dat leerlingen die een hoger gepercipieerde 

onderwijsvorm kiezen hogere prestaties voor wiskunde behaalden. In de studie over academisch 

zelfconcept vonden we dat leerlingen die een hoger gepercipieerde onderwijsvorm kiezen vaker 

een lager academisch zelfconcept hebben. De effecten van de tweede studie varieerden echter 

sterk naargelang de precieze vorm van academisch zelfconcept die werd gemeten en naargelang 

de onderwijsvormen die vergeleken werden.  

Het onderzoek in dit rapport breidt de voorgaande studies uit op drie manieren: (a) in plaats van 

de eerste drie jaren secundair onderwijs worden de eerste vier jaren secundair onderwijs 

onderzocht, (b) voor schoolse prestaties wordt ook Nederlands begrijpend lezen onderzocht, en 

(c) de leerlingen die éénmaal van onderwijsvorm veranderen wordt ook onderzocht. Net zoals bij 

de voorgaande studies corrigeren we voor de initiële verschillen tussen leerlingen die in 

verschillende onderwijsvorm schoollopen. Voor de vergelijking tussen leerlingen die in hun 

onderwijsvorm blijven en leerlingen die van onderwijsvorm veranderen corrigeren we ook voor de 

verschillen tussen deze groepen net voor de verandering van onderwijsvorm. De concrete 

onderzoeksvragen zijn: 

1. Wat is het effect van een onderwijsvorm op de gemiddelde leerwinst van vergelijkbare 

leerlingen? 

2. Wat is het effect van een onderwijsvorm op de gemiddelde ontwikkeling voor academisch 

zelfconcept van vergelijkbare leerlingen? 

3. Is er een effect van onderwijsvormverandering op de gemiddelde leerwinst van 

vergelijkbare leerlingen? 

4. Is er een effect van onderwijsvormverandering op de gemiddelde ontwikkeling voor 

academisch zelfconcept van vergelijkbare leerlingen? 

Voor dit onderzoek gebruiken we de gegevens van het onderzoek 'Loopbanen in het Secundair 

Onderwijs’ (LiSO-project). De substeekproef bestaat uit 5417 leerlingen die in september 2013 

startten in het secundair onderwijs. Er waren vier groepen van tracks: (1) klassieke talen (KT), (2) 

moderne wetenschappen (MW), (3) technisch onderwijs (TO) en (4) beroepsvoorbereidend 

onderwijs (BV). Hoewel er in het eerste jaar secundair onderwijs nog geen officiële tracks 

onderscheiden worden, sluit de studiekeuze in het eerste jaar SO wel sterk aan bij de 

onderwijsvormen die in de bovenbouw zullen volgen. In dit Engelstalige rapport wordt daarom wel 

gesproken over ‘tracking’ in het eerste jaar secundair onderwijs, omdat het gaat over het 

groeperen van leerlingen voor een volledig schooljaar voor (quasi) alle vakken.  

De steekproef is verspreid over de vier ‘tracks’ in het eerste jaar als volgt: 1419 leerlingen zaten in 

KT, 2229 leerlingen zaten in MW, 1033 leerlingen zaten in TO en 736 leerlingen zaten in BV. Veel van 

deze leerlingen veranderden echter van track doorheen het secundair onderwijs. LiSO-scholen die 

kiezen voor een heterogene klassamenstelling in het eerste jaar, werden geschrapt uit de 

steekproef van deze studie omdat er dus niet aan tracking wordt gedaan. Toetsen en vragenlijsten 

werden afgenomen aan de start van het secundair onderwijs (september 2013), op het einde van 

het eerste leerjaar van de eerste graad (mei 2014), op het einde van het tweede leerjaar van de 

eerste graad (mei 2015), op het einde van eerste leerjaar van de tweede graad (mei 2016) en op het 

einde van tweede leerjaar van de tweede graad (mei 2017). Prestaties voor wiskunde werden 
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gemeten op elk van deze vijf momenten, terwijl we voor prestaties voor Nederlands begrijpend 

lezen enkel werken met metingen uit september 2013 en mei 2017. Algemeen academisch 

zelfconcept, zelfconcept in wiskunde en zelfconcept in Nederlands werden ook gemeten op elk 

van deze momenten. Dit onderzoek beschrijft dus de effecten van tracks tijdens de eerste vier jaar 

van het secundair onderwijs op wiskunde, Nederlands begrijpend lezen, algemeen academisch 

zelfconcept, zelfconcept in wiskunde en zelfconcept in Nederlands. 

Om vergelijkbare leerlingen in verschillende tracks te vinden gebruiken we g-methods. Deze 

methoden zijn gericht op het schatten van effecten van behandelingen (in dit onderzoek is dat de 

toewijzing aan een bepaalde track), waarbij personen van behandeling kunnen veranderen (in dit 

onderzoek zijn dat leerlingen die van track veranderen). Deze methoden staan toe om 

onvertekende effecten te schatten wanneer er voldoende over de achtergrond van de leerlingen 

gekend is. De achtergrond van leerlingen werd beschreven op basis van schoolse prestaties, 

sociaaleconomische achtergrond en psychosociale variabelen die gemeten waren in september 

2013. Ook werd er rekening gehouden met het verschil in de evolutie in schoolse prestaties en non-

cognitieve uitkomsten voor leerlingen die van track veranderen en leerlingen die in dezelfde track 

blijven. Om onze resultaten methode-onafhankelijk te maken vergeleken we twee g-methods: de 

marginal structural mean model en de structural nested mean model. Bij elk van deze methoden 

bleek dat er enkel (voldoende) vergelijkbare leerlingen waren tussen bepaalde tracks. KT wordt 

daarom vergeleken met het MW, MW wordt vergeleken met TO en TO wordt vergeleken met BO. 

Er moet opgemerkt worden dat het aantal vergelijkbare leerlingen tussen TO en BV eerder beperkt 

is. Om dezelfde reden was het enkel mogelijk om de effecten van verandering van track te 

onderzoeken voor leerlingen die eenmaal van een zogenaamde hogere track naar een zogenaamde 

lagere track veranderen. 

Voor de eerste onderzoeksvraag vinden we voor vergelijkbare leerlingen in verschillende tracks dat 

er in tracks met een gemiddeld sterkere leerlinginstroom significant meer leerwinst gemaakt 

wordt. De effecten op wiskunde na vier jaar zijn klein voor de vergelijking KT met MW en de 

vergelijking MW met TO. Voor de vergelijking TO met BV is het effect groot voor wiskunde na vier 

jaar. De effecten op Nederlands begrijpend lezen na vier jaar zijn klein voor de vergelijking KT met 

MW en de vergelijking MW met TO. Voor de vergelijking TO met BV is het effect niet significant voor 

Nederlands begrijpend lezen na vier jaar. De resultaten zijn in de lijn van de eerdere studie over 

tracks en schoolse prestaties (OL1.1_12). Algemeen genomen bevestigen deze resultaten dat naar 

een zogenaamd hoger gepercipieerde track gaan positief is voor schoolse prestaties. 

Voor de tweede onderzoeksvraag vinden we een klein positief effect voor KT vergeleken met MW 

voor algemeen academisch zelfconcept en zelfconcept in Nederlands. Er is geen verschil voor 

zelfconcept in wiskunde. We vinden een klein negatief effect voor MW vergeleken met TO voor 

algemeen academisch zelfconcept en zelfconcept in wiskunde. Er is geen verschil voor zelfconcept 

in Nederlands. We vinden eerder negatieve effecten voor TO vergeleken met BV. Meestal is het dus 

voordelig voor het zelfconcept om in een track te zitten waar de gemiddelde leerling minder hoge 

prestaties laat optekenen, uitgezonderd bij de vergelijking tussen KT en MW. De resultaten zijn in 

de lijn van de eerdere studie over tracks en academisch zelfconcept (OL1.1_13). 

Voor de derde onderzoeksvraag vinden we dat leerlingen die veranderen van een hoger 

gepercipieerde track naar een lager gepercipieerde track minder leerwinst boeken (wiskunde en 
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Nederlands) in vergelijking met leerlingen die in de hoger gepercipieerde track blijven. Dit vinden 

we zowel voor de vergelijking KT met MW, MW met TO en TO met BV. In het algemeen presteren 

de leerlingen die naar een lager gepercipieerde track veranderen gelijk aan de leerlingen die heel 

hun schoolloopbaan in deze track waren. 

Voor de vierde onderzoeksvraag vinden we dat leerlingen die veranderen van een hoger 

gepercipieerde track naar een lager gepercipieerde track een positiever academisch zelfconcept 

ontwikkelen in vergelijking met leerlingen die in de hoger gepercipieerde track blijven. Dit vinden 

we zowel voor de vergelijking MW met TO en TO met BV. De leerlingen die naar een lager 

gepercipieerde track veranderen evolueren dus naar een academisch zelfconcept dat gelijkt op de 

leerlingen die heel hun schoolloopbaan in deze track waren. Voor de vergelijking KT en MW vinden 

we echter dat leerlingen die van track veranderen eerder dalen in academisch zelfconcept. Dit is 

wel conform aan de eerdere bevinding dat MW een negatief effect heeft op academisch 

zelfconcept in vergelijking met KT. Ook hier evolueren de leerlingen dus naar een academisch 

zelfconcept dat gelijkt op de leerlingen die heel hun schoolloopbaan in deze track waren. 

Een sterk punt van dit onderzoek is dat met verschillende methodes wordt nagegaan hoe 

vergelijkbare leerlingen zouden presteren als ze in een andere track zouden zitten. Met deze 

methodes konden we ook de effecten van eenmalige trackverandering onderzoeken. Dit is vooral 

mogelijk doordat tracking in Vlaanderen een eigenschap heeft die niet kenmerkend is voor de 

meeste andere onderwijssystemen. In Vlaanderen verloopt het verdelen van leerlingen in tracks 

immers niet op basis van objectieve criteria (bijvoorbeeld een instaptoets). Hierdoor verschillen de 

tracks wel gemiddeld op het vlak van instroomniveau, maar vinden we nog steeds veel 

vergelijkbare leerlingen terug in verschillende tracks. In andere onderwijssystemen zien we dat er 

minder of nauwelijks vergelijkbare leerlingen zijn in verschillende tracks. Ook tussen leerlingen die 

eenmaal van track veranderen en leerlingen die in hun track blijven vonden we steeds voldoende 

vergelijkbare leerlingen. 

We concluderen dat hoger gepercipieerde tracks doorgaans een positief effect hebben op schoolse 

prestaties. De effecten zijn meestal klein. Anderzijds concluderen we dat hoger gepercipieerde 

tracks doorgaans een negatief effect hebben op academisch zelfconcept. Dit is echter niet zo bij de 

vergelijking KT en MW, waar het net KT is dat een positief effect heeft op academisch zelfconcept. 

Leerlingen die van track veranderen verliezen voor een stuk de extra leerwinst die ze maakten in 

de hoger gepercipieerde track. Wanneer ze in de lager gepercipieerde track komen presteren ze na 

verloop van tijd gelijk met de leerlingen die reeds van het begin in deze track waren. Naar een lager 

gepercipieerde track gaan is doorgaans positief voor het academisch zelfconcept. Dit is echter niet 

zo bij verandering van KT naar MW. 

De resultaten geven hoofdzakelijk weer hoe leerlingen beïnvloed worden door de huidige structuur 

van het secundair onderwijs. We tonen dat ‘hoog mikken’, een strategie die vaak gebruikt wordt 

bij studiekeuze,  een beperkt positief effect heeft op schoolse prestaties voor de vergelijking KT en 

MW, en de vergelijking in MW en TO. Wanneer we de resultaten voor academisch zelfconcept 

hiermee vergelijken, dan lijkt er een interessante afweging te zijn. Zo blijkt dat er bij de vergelijking 

MW en TO, en de vergelijking TO en BV een soort ‘trade-off’ te zijn tussen schoolse prestaties en 

academisch zelfconcept. Verder toont het onderzoek inderdaad dat leerlingen die (eenmaal) van 

track veranderen minder leerwinst maken dan leerlingen die in hun track blijven. De leerlingen die 
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van track veranderen scoren echter niet lager dan leerlingen die reeds vanaf de start van het 

secundair onderwijs in dezelfde track zaten. Ook bij track verandering zien we een gelijkaardige 

‘trade-off’ tussen schoolse prestaties en academisch zelfconcept. 
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1 Introduction 
Researchers often need to estimate the effect of a treatment on an outcome, usually distinguishing 

between an active treatment and a control condition. If exposure to the active treatment condition is 

random, as in a randomized controlled trial (RCT), the average treatment effect is equal to the 

observed difference between the active treatment and control group (Rosenbaum, 2002, pp. 19-70; 

Rubin, 1974, pp. 663-695). However, exposing respondents at random to the active treatment 

condition is often either practically impossible or undesirable due to a lack of external validity (Pearl, 

2009, p. 260; Rubin, 1974, pp. 688-689). In this case only observational studies with nonrandom 

treatment exposure are available (Rosenbaum, 2002, pp. 1-17). Observational studies are usually 

characterized by pretreatment variables that predict both the active treatment exposure and the 

outcome. These pretreatment variables are called confounders. If unaccounted for, the estimated 

average treatment effect is partially attributable to the confounders (i.e., biased, Pearl, 2010, pp. 78-

85; VanderWeele & Shpitser, 2013). Several methods can account for confounders, yielding unbiased 

average treatment effects when certain assumptions are met (Schafer & Kang, 2008). Hence, 

unbiased average treatment effects can be estimated even in the presence of confounders. 

However, treatment exposure is often not fixed to a single time point, but can occur at multiple time 

points (Robins, 1997, pp. 69-70; Robins & Hernán, 2008, pp. 560-567). Such time-varying treatments 

are characterized by different treatment histories across respondents (Robins, Hernan, & Brumback, 

2000, p. 151). We illustrate this in Table 1, with treatment exposure Zti for respondent i possible at 

time t = 1 and t = 2. Zti is 0 when respondent i is in the control condition and 1 when respondent i is in 

the active treatment condition. In Table 1 respondent 1 was never treated, respondent 2 was treated 

early, respondent 3 was treated late and respondent 4 was always treated. The treatment history �̅�2i 

= (Z1i, Z2i) can be expressed as �̅�21 = (0,0) for respondent 1, �̅�22 = (1,0) for respondent 2, �̅�23 = (0,1) for 

respondent 3 and �̅�24 = (1,1) for respondent 4. Hence, a treatment history describes at which time 

points a respondent was exposed to the time-varying treatment. 

Table 1 

Illustration treatment histories and covariate values respondents 1, 2, 3 and 4 

Respondent 
i 

Time 
t 

Treatment 
Zti 

Constant confounder 
X0i 

Time-varying confounder 
Lti 

1 1 0 58 29 
1 2 0 58 23 
2 1 1 34 19 
2 2 0 34 24 
3 1 0 67 11 
3 2 1 67 18 
4 1 1 82 23 
4 2 1 82 25 

 

While a treatment history describes a respondent’s history of treatment exposure, it does not show 

how a time-varying treatment affects and is affected by other variables. For that purpose, a directed 

acyclic graph (DAG) is often used (e.g., Greenland, Pearl, & Robins, 1999). A DAG is a visualization 

that shows causal relationships between variables over time. In this visualization, an arrow from one 

variable to another variable represents a causal effect, with the causal variable always preceding the 

affected variable in time (i.e., directed and acyclic). Note that DAGs do not use subscript i, for the 

effects of variables in DAGs are averages across respondents. Figure 1 shows the example of Table 1 
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with time-varying treatment Zt and outcome Y. X0 predicts both the outcome Y and the treatment 

exposures Z1 and Z2. This makes X0 a confounder of Zt and Y. Furthermore, the treatment history Zt 

affects and is affected by the time-varying covariate Lt. Because Lt also affects the outcome Y, Lt is 

called a time-varying confounder. X0 and Lt are also in Table 1. 

 

Figure 1. DAG example time-varying treatment Zt. 

 

A DAG describes time-varying treatments in an abstract way, so practical examples may help 

comprehension. As a first example, similar to Figure 1, van der Wal et al. (2010) investigated the 

effect of two competing dialysis treatments (Zt) on mortality (Y) across six-month intervals (t) in a 

population of kidney patients. The researchers also controlled for time-varying confounders that 

described the severity of the kidney disease (Lt). The severity of the kidney disease affected the 

choice of dialysis treatment. Then, the choice of dialysis treatment affected the severity of the kidney 

disease at a later stage. As a second example, shown in Figure 2, VanderWeele, Hawkley, Thisted, 

and Cacioppo (2011) investigated the effects of loneliness (Zt) on depressive symptoms (Yt) across 

several follow-up meetings (t). Here, loneliness at follow-up 1 may affect depressive symptoms at 

follow-up 2, which in its turn affect both loneliness and depressive symptoms at follow-up 3. This is 

an example of a repeated measure that is both a time-varying confounder and the outcome. Both 

examples illustrate that time-varying treatments affect and are affected by time-varying 

confounders. 

 

Figure 2. DAG example time-varying treatment Zt which affects and is affected by Yt with 

unmeasured colliding variable U0. 

 

A time-varying treatment that affects and is affected by a time-varying confounder causes a 

challenge in procuring unbiased average effect estimates. The main challenge is that it is wrong to 

simply account for a time-varying confounder as a time-fixed confounder, because this will result in 

bias due to ‘blocking’ and ‘collider stratification’ (Cole et al., 2009; Rosenbaum, 1984). Blocking 

occurs when controlling for a time-varying confounder value that follows on a treatment exposure 
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(Rosenbaum, 1984). Using the example of Figure 1, this would happen with a regression model with 

outcome Y, and with Z1, Z2, L1 and L2 used as covariates. By controlling for L2, the path of Z1 through L2 

to Y is controlled for, which biases the effect of Z1 on Y. Bias due to collider stratification happens 

when conditioning on a variable which is a common effect of two independent variables (Cole et al., 

2009; Whitcomb, Schisterman, Perkins, & Platt, 2009). In Figure 2, Y1 is the common effect of 

variables Y1 and U0. When estimating the average treatment effect of Z2, researchers may think that 

only controlling for Y1 is enough, for it is the only confounder. However, conditioning on Y1 creates a 

backdoor path between Z1 and Y2 through U0. Through this backdoor path Z1 now confounds Y2 and 

Z2. Accordingly, Z1 needs to be controlled for when estimating the average treatment effect of Z2 (If 

unfamiliar with colliders, Appendix A further illustrates collider stratification bias). Hence, apt 

methods are required when assessing time-varying treatments without introducing bias by blocking 

or collider stratification. 

In the following sections we compare two models that can estimate unbiased average effects of 

time-varying treatments in the presence of time-varying confounding. Both models are derived from 

the g-formula, and together they are known as the G-methods. The first model, the marginal 

structural mean model (MSMM), is not new for educational research (Vandecandelaere, 

Vansteelandt, De Fraine, & Van Damme, 2016), but has been rarely used. The second, the structural 

nested mean model (SNMM) has to our knowledge never been used in psychological research. Both 

models share common goals, and the differences are not apparent. Hence, we first introduce the 

potential outcomes framework, wherein both models are situated, and introduce the g-formula. 

Afterwards both the MSMM and the SNMM are introduced and compared. We then apply both 

models in a simulation study and an empirical study. 

1.1 Potential outcomes framework 

1.1.1 The fundamental problem of causal inference 

To introduce the potential outcomes framework, we use a simple example with treatment exposure 

being only possible at one time point and having two treatment conditions. Treatment exposure for 

respondent i is described by an indicator Zi, with Zi = 0 for the control condition and Zi = 1 for the 

active treatment condition. The central idea (Hernán et al., 2004; Imbens & Rubin, 2015; Rubin, 1974 

pp. 689- 690) is that there exist two potential outcomes for a respondent i: the potential outcome of 

being in the control condition, Yi(0), and the potential outcome of being in the active treatment 

condition, Yi(1). However, in practice respondent i only receives one of both treatments, either Zi = 0 

or Zi = 1. The potential outcome of being in the control condition is never observed for someone in 

the active treatment condition, while the potential outcome of being in the active treatment 

condition is never observed for someone in the control condition. Formally put, Yi(0)|Zi = 1 and 

Yi(1)|Zi = 0 are never observed. Therefore, the individual treatment effect for the potential 

outcomes, Δi = Yi(1) – Yi(0), cannot be observed. Holland (1986, p. 947) calls this the fundamental 

problem of causal inference.  

To overcome the fundamental problem of causal inference statistical theory has been developed, 

which allows for the estimation of an average treatment effect. Rosenbaum and Rubin (1983) 

showed that an average treatment effect can be estimated as E[Y(1)|Z = 1] − E[Y(0)|Z = 0], if the 

exchangeability assumption is true. This assumption means that the average potential outcome of 

either the active condition or the control condition is equal across the populations in different 
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treatment conditions, with E[Y(1)|Z = 1] = E[Y(1)] and E[Y(0)|Z = 0] = E[Y(0)]. Colloquially, this means 

that the respondents of one treatment condition are representative for the entire population. There 

are no differences in pretreatment variables between treatment conditions. However, this 

assumption only holds if respondents were assigned at random to the treatment conditions, as in an 

RCT. Put otherwise, treatment exposure is in this case independent from the potential outcomes, 

with Y(1),Y(0)⊥⊥Z. Hence, it is possible to overcome the fundamental problem of causal inference by 

estimating an average treatment effect if the exchangeability assumption is tenable. 

1.1.2 The conditional exchangeability assumption 

In observational studies, the exchangeability assumption is usually untenable, for the treatment 

conditions likely differ in pretreatment variables that affect the outcome Y. These pretreatment 

variables, referred to as L, are the confounders. However, Rosenbaum and Rubin (1983) showed that 

an average treatment effect can still be estimated, if the conditional exchangeability assumption is 

tenable. This assumption means that the average potential outcome of either the active treatment 

condition or the control condition is equal across the populations in different treatment conditions, 

when controlling for confounders L, with Y(1),Y(0)⊥⊥Z|L. For clarity, we further refer to L as a single 

variable. Colloquially, by using confounder L we can estimate what the average outcome would be if 

the entire population were in one treatment condition. Hence, we can estimate an average 

treatment effect by using the conditional exchangeability assumption. 

When estimating an average treatment effect a distinction is usually made between the average 

treatment effect for the entire population, the ATE, and the average treatment effect for the treated 

population, the ATT (Imbens, 2004). The ATE is defined as E[Y(1)] - E[Y(0)] whereas the ATT is defined 

as E[Y(1)|Z = 1] - E[Y(0) |Z = 1]. Colloquially, the ATE is the average effect of a treatment on the entire 

population. The ATT is the average effect of a treatment on the treated population. For the ATT, the 

conditional exchangeability assumption can be slightly relaxed into the weak conditional 

exchangeability assumption, with Y(0)⊥⊥Z|L. Hence, for the ATT, it is enough that the average 

potential outcome of being in the control condition can be estimated by using confounder L. When 

we hereafter discuss ‘average treatment effects’, this includes both the ATE and ATT. We will 

specifically refer to the ATE and ATT when necessary. 

The potential outcomes framework describes which assumptions should be fulfilled for estimating 

average treatment effects in the presence of confounders. However, an estimator that can 

incorporate these assumptions is required. Several estimators exist, including the Horvitz-Thompson 

type estimator with inverse probability treatment weights and the g-estimator. Both estimators are 

considered applications of the g-formula (e.g., Snowden, Rose, & Mortimer, 2011, p. 732; 

Vansteelandt & Keiding, 2011, p. 739). The g-formula is an unbiased estimator for the population 

average of a potential outcome and was introduced by Robins (1986). Applied to a time-fixed 

treatment the g-formula is identical to standardization. Equation 1 illustrates standardization for 

estimating the ATE with treatment Z, discrete confounder L and outcome Y: 

E(𝑌(𝑍 = 𝑧)) = ∑ E(𝑌|𝑍 = 𝑧 , 𝐿 = 𝑙 )𝑃(𝐿 = 𝑙 )𝑙   (1) 

Equation 1 consists of two main components to the right of the equality sign. The first component is 

the expected value of the outcome Y given treatment condition z and confounder level l. Given that 

this is simply the mean of observed outcomes for a stratum, it is easily estimated. The second 
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component is the probability of confounder L having value l, which is also easily estimated. 

Subsequently, the two components are simply multiplied and summed across all confounder levels of 

L. This results in an unbiased estimate of the potential outcome for treatment Z being z for the 

population. Another way to understand standardization is that the first component is an unbiased 

estimate of the outcome after treatment exposure for a specific confounder level. The second 

component then simply weights each of these unbiased estimates according to the probabilities of 

the confounder distribution in the population. Hence, standardization allows us to estimate the 

population average potential outcome for each treatment condition and accordingly estimate the 

average treatment effect. 

We illustrate how ATE estimation with standardization works on a simple example. In Table 2 there 

are three respondents in the control condition (Z=0) and three respondents in the active treatment 

condition (Z=1). For the former respondents we know Y|Z=0, whereas for the latter respondents we 

know Y|Z=1. Naïvely, we may think that subtracting the averages of both (56-52) yields the average 

treatment effect, 4. This is incorrect, for we note that confounder L is unequally distributed across 

the active treatment condition and control condition, with P(L=1|Z=1) =2/3 and P(L=1|Z=0) =1/3. 

However, in the total sample P(L=1) =1/2. With this information we can estimate E(Y(0)), which is the 

mean of the potential outcome of being in the control condition for the entire population, and 

E(Y(1)), which is the mean of the potential outcome of being in the active treatment condition. When 

we use standardization, E(Y(0)) = ((50+50)/2)*1/2+56*1/2 results in 53, whereas E(Y(1)) = 

52*1/2+((58+58)/2)*1/2 results in 55. The difference between E(Y(1)) and E(Y(0)) is 2, hence the ATE 

is 2.  

Table 2 

Example dataset estimation of ATE and ATT using standardization 

Respondent Z Y|Z=0 Y|Z=1 L 

1 0 50 ? 0 

2 0 50 ? 0 

3 0 56 ? 1 

4 1 ? 52 0 

5 1 ? 58 1 

6 1 ? 58 1 

 

1.1.3 Assumptions of consistency, stable unit treatment value and positivity 

We note that three, often implicit, assumptions precede the conditional exchangeability assumption: 

the consistency assumption, stable unit treatment value assumption and positivity assumption.  

The consistency assumption entails that the observed outcome of a respondent i in a treatment 

condition should be equal to the potential outcome under that treatment condition, with 𝑌𝑖
𝑜𝑏𝑠 = Yi(zi) 

if Zi = zi (Cole & Frangakis, 2009). Colloquially, this assumption connects potential outcomes to the 

observed outcomes, because it states that when potential outcomes are observed, they should be 

equal to the observed outcomes.  

The stable unit treatment value assumption (Rubin, 1990) entails that the potential outcome for a 

respondent does not change according to the treatment assignment of another respondent. 

Colloquially, treatment exposure of one respondent should not interfere with another respondent.  
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The positivity assumption (Cole & Hernán, 2008) entails that for all observed strata of confounder 

combinations, both the treatment and control condition occur at least once. A stratum of a 

confounder combination refers to the unique combination of confounder values. This assumption is 

alternatively described as the experimental treatment assignment assumption (ETA). The ETA is that 

there should be no combination of confounder values which perfectly predicts treatment 

assignment, because then treatment conditions are simply incomparable due to a unique 

pretreatment difference. The positivity assumption in a dataset is tested by assessing the area of 

common support. The area of common support can either be complete (i.e., overlap for all observed 

strata), limited (i.e., overlap for some observed strata) or non-existing (i.e., no overlap). Causal 

inference is impossible in the latter case. 

For brevity, during the following sections we consider the consistency and stable unit treatment 

value assumptions to be fulfilled. The positivity assumption will be reinterpreted for the g-formula, 

MSMMs and SNMMs. 

1.2 Potential outcomes for time-varying treatments 
The potential outcomes framework has been adapted for time time-varying treatments as well (e.g., 

Robins, 1997; Robins & Hernán, 2008; Robins et al., 2000). We continue using the example of the 

introduction (Figure 1) with �̅�t describing the treatment history until time t and �̅�t describing the 

time-varying confounders histories until time t. For brevity, we drop the vector of confounders with 

constant values over time X0. Now we are no longer estimating population average potential 

outcomes for treatment conditions but population average potential outcomes for treatment 

histories. We have four possible treatment histories at t = 2, and �̅�2 is either (0,0), (0,1), (1,0) or (1,1). 

In this case there are four potential outcomes, one for each treatment history, expressed as Y(�̅�2).  

Robins et al. (2000) showed that to estimate average treatment effects of a time-varying treatment 

in the presence of a time-varying confounder, a sequential conditional exchangeability assumption 

should be true (Robins & Hernán, 2009). This assumption entails that the average potential outcomes 

of being in one of either treatment histories does not differ between respondents across the 

compared treatment histories when controlling for �̅�t and �̅�t-1, with Y(�̅�t)⊥⊥ �̅�t|�̅�t-1,�̅�t. This is 

analogous to the conditional exchangeability assumption for a time-fixed treatment. Hence, we can 

estimate the average effect of a treatment history when the sequential conditional exchangeability 

assumption is tenable. 

Just as for a time-fixed treatment, a distinction can be made between the ATE and ATT for time-

varying treatments. The ATE is now defined as E[Y(𝑧̅t)] - E[Y(𝑧′̅t)], the average effect of a treatment 

history on the entire population, whereas the ATT is now defined as E[Y(𝑧̅t)|�̅�t = 𝑧̅t] - E[Y(𝑧′̅t) |�̅�t = 𝑧̅t], 

the average effect of a treatment history on those in the population having had that treatment 

history. It should also be noted that the average effect of a treatment history is always relative to a 

treatment history that is considered a reference treatment history. This is usually the never treated 

treatment history. 

Having situated time-varying treatments in the potential outcomes framework allows us to describe 

the g-formula (Robins & Hernán, 2008, pp. 571-572). This formula is an unbiased estimator for the 

population average of potential outcomes for a treatment history under the sequential conditional 



 

14 

 

exchangeability assumption. For our treatment history �̅�t with confounder history �̅�t and outcome Y, 

the g-formula for a potential value Y(�̅�𝑡  = 𝑧�̅�) is given in equation 2. 

𝐸(𝑌(�̅�𝑡 = 𝑧�̅�)) = ∑ [𝐸(𝑌|�̅�𝑡 = 𝑧�̅� , �̅�𝑡 = 𝑙�̅�  ) ∏ 𝑃(�̅�𝑡 = 𝑙�̅�  |�̅�𝑡−1 = 𝑧�̅�−1, �̅�𝑡−1 = 𝑙�̅�−1 )
𝑇
𝑡=0 ] 𝑙 ̅ 

 (2) 

Just as standardization for a time-fixed treatment, equation 2 consists of two main components to 

the right of the equation sign. The first component is now the expected value of the observed 

outcome Y given treatment history 𝑧�̅� and confounder history 𝑙�̅�. Given that this is simply the mean of 

the observed outcomes for a stratum, it is easily estimated. The second component is a product of 

probabilities of confounder history 𝑙t̅ from time t=0 until t=T, given prior treatment history 𝑧�̅�−1 and 

prior confounder history 𝑙�̅�−1. The two components are estimated for all possible confounder 

histories of �̅�𝑡  and subsequently summed. The sum provides an unbiased estimate of the population 

average potential outcome for treatment history 𝑧�̅�. Hence, the g-formula permits the estimation of 

the population average potential outcome for each treatment history and to subsequently estimate 

the average treatment effect. 

When using the g-formula, the positivity assumption (Cole & Hernán, 2008) requires that, prior to 

each treatment exposure of a treatment history, all observed combinations of confounder values and 

prior treatment histories occur at least once.  

The introduction of the g-formula makes it seem that MSMMs and SNMMs are superfluous. 

However, the g-formula is not well suited to finite samples. The formula requires stratification 

according to both treatment histories and confounder histories, and the amount of unique 

combinations will quickly exceed any dataset’s ability to deliver stable estimates (Daniel et al., 2013, 

pp. 1614-1615). Hence, the positivity assumption is usually untenable.  

1.3 Marginal structural mean model 
The MSMM is a model for estimating the population average of the potential outcome for a 

treatment history, which is called the marginal mean (Hernán, Brumback, & Robins, 2000; Robins et 

al., 2000). The marginal mean is formally expressed as E[Y(�̅�t)]. Conceptually, the marginal mean of 

each treatment history is central in the MSMM, for the difference between two marginal means is an 

ATE estimate. The estimation of the marginal means consists of three steps. First, we define a 

structural model that links the marginal mean with a set of treatment history indicators. Second, 

inverse probability treatment weights are estimated, which are based on the confounder history and 

treatment history. Third, the resulting weights are used in a Horvitz-Thompson type estimator for 

estimating the parameters of the structural model. The resulting marginal means can then be used to 

estimate the ATE, which is unbiased if the sequential conditional exchangeability assumption holds 

(Robins & Hernán, 2009). We describe each of these steps in more detail in the following sections. 

1.3.1 Structural model 

The first step in estimating a marginal mean is to define a structural model. For treatment history 𝑧̅2 

in our example, its structural model is described in equation 3: 

𝐸[𝑌(𝑍2
̅̅ ̅ = 𝑧2̅)] = 𝛽0  + 𝛽1𝑧1  + 𝛽2𝑧2  +  𝛽3𝑧1𝑧2 (3) 

𝛽0 is the marginal mean when the population was never treated, treatment history �̅�2 = (0,0). 𝑧1 and 

𝑧2 are binary indicators for allocation to the active treatment condition when t = 1 and t = 2 
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respectively. 𝛽1 corresponds to the average change in E[𝑌(𝑍2
̅̅ ̅ = 𝑧2̅)] under treatment history �̅�2 = 

(1,0) compared to 𝛽0. 𝛽2 corresponds to the average change in E[𝑌(𝑍2
̅̅ ̅ = 𝑧2̅)] under treatment 

history �̅�2 = (0,1) compared to 𝛽0. 𝛽3 corresponds to the average change in E[𝑌(𝑍2
̅̅ ̅ = 𝑧2̅)] under 

treatment history �̅�2 = (1,1) compared to 𝛽0+𝛽1+𝛽2. If needed, the model can be easily simplified by 

placing constraints. For example, 𝛽3 can be constrained to zero if the average change resulting from 

treatment history 𝑧2̅ = (1,1) is thought to be equal to 𝛽1+𝛽2. Hence, the model describes the 

population average potential outcome per treatment history. To procure unbiased estimates of this 

structural model we us a Horvitz-Thompson type estimator with inverse probability treatment 

weights. 

1.3.2 Inverse probability treatment weighting 

The main rationale of inverse probability treatment weighting (IPTW; Austin, 2011) is to correct for 

the unequal selection probabilities into different treatment conditions (Imbens, 2000, p. 708; 

Rosenbaum & Rubin, 1983). Because when these probabilities are based on the confounder and 

treatment histories, they summarize the pretreatment differences in confounder and treatment 

histories between treatment conditions. An estimator that accounts for these unequal treatment 

probabilities will also account for pretreatment differences between treatment conditions. 

Therefore, the inverse of these probabilities can be used as weights, for these weights make each 

treatment history resemble the total population. Equation 4 describes the formula for estimating the 

weights based on treatment and covariates histories: 

𝑊𝑡𝑜𝑡𝑎𝑙 = ∏ 𝑃[𝑍𝑡 = 𝑧𝑡|�̅�𝑡, �̅�𝑡−1]−1
𝑡  (4) 

The main component of this formula is the probability of a treatment exposure Zt, conditional on the 

confounder history �̅�𝑡 and treatment history �̅�𝑡−1. The inverse of this probability is then computed to 

procure a time-specific weight. Followingly, the product of the time-specific weights for each 

treatment exposure for a treatment history until time t are computed, resulting in the total weight 

Wtotal. These estimated weights can get very large though, which leads to inefficiency in the 

parameter estimates. Therefore, we use a stabilized total weight SWtotal by multiplying each time-

specific weight with the probability of a treatment exposure zt for treatment history 𝑧�̅�−1.  

𝑆𝑊𝑡𝑜𝑡𝑎𝑙 = ∏
P[𝑍𝑡 = 𝑧𝑡|�̅�𝑡−1]

P[𝑍𝑡 = 𝑧𝑡|�̅�𝑡 , �̅�𝑡−1]
𝑡  (5) 

The variability in weights is reduced by using equation 5 (Hernán et al., 2000; Robins et al., 2000), 

which benefits efficiency. We note that when using stabilized weights the entire treatment history 

needs to be part of the structural model (Robins & Hernán, 2009; Talbot, Atherton, Rossi, Bacon, & 

Lefebvre, 2015).  

Compared to the g-formula, MSMMs also weight each treatment history to resemble the total 

population. However, MSMMs do not need to estimate 𝑃(�̅�𝑡 = 𝑙�̅�  |�̅�𝑡−1 = 𝑧�̅�−1, �̅�𝑡−1 = 𝑙�̅�−1 ) from 

the g-formula, bypassing the data sparseness caused by stratification on both treatment and 

confounder histories (Daniel et al., 2013, pp. 1614-1615). Rather, IPTW makes each treatment history 

resemble the total population and achieve equal confounder distributions across treatment histories 

on average across samples. Accordingly, the positivity assumption when using MSMMs is less 
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stringent compared to the g-formula. It suffices to have respondents with equal propensity scores 

across treatment conditions for an area of common support.  

1.3.3 Application of marginal structural mean models 

The inverse probability treatment weights are procured with logistic regression models. These 

models estimate propensity scores (PS) based on the treatment histories and confounder histories, 

as described in equations 4 and 5. The inverse of the PS estimates are then used weights (e.g., Robins 

et al., 2000, pp. 52-53). This is also the reason why propensity scores are sometimes called balancing 

scores, for IPTW gives balanced confounder distributions on average (Caliendo & Kopeinig, 2008, p. 

1; Rosenbaum & Rubin, 1983, pp. 42-43). 

Balance in the confounders must be assessed after IPTW to evaluate its success in a single sample 

(Austin, 2011, pp. 411-414). If balance is reached, the Horvitz-Thompson type estimator will give 

unbiased parameter estimates of the structural model. Accordingly, the marginal means of different 

treatment histories can be used to estimate ATEs. 

However, while the MSMM gives unbiased ATE estimates, it has a limited efficiency for multiple 

reasons. A first reason is that inverse probability treatment weights achieve confounder balance on 

average across infinite samples. However, in a single sample imbalance exists by chance (e.g., Imai, 

King, & Stuart, 2008), which decreases efficiency. Second, inverse probability treatment weights are 

very large for respondents who have a probability of a treatment exposure close to either one or 

zero (e.g., Vansteelandt et al., 2014, pp. 12-13). Given that time-varying treatments have multiple 

treatment exposures, very large weights are likely to occur. Third, variance in weights of an earlier 

treatment exposure of a time-varying treatment is transmitted to all later treatment exposures (e.g., 

Imai & Ratkovic, 2015, p. 1013). Hence, variance in the weights increases per time point of a time-

varying treatment. This decreases efficiency per time point of a time-varying treatment.  

Several analysis strategies have been developed to ameliorate the limited efficiency of MSMMs. First, 

to reduce imbalance in a single sample, both time-fixed confounders and baseline measures of the 

time-varying confounders can be included as covariates in the Horvitz-Thompson type estimator 

(e.g., Robins et al., 2000). Any imbalance in these confounders will then be reduced, which improves 

efficiency. However, it will not directly improve imbalance in time-varying confounder values 

measured after the first treatment exposure. Second, to prevent extreme weights caused by 

probabilities close to either one or zero, respondents with these probabilities can be removed from 

the sample. Often a minimum of 0.05 and a maximum of 0.95 are used as cutoff values (e.g., Crump, 

Hotz, Imbens, & Mitnik, 2009). While this removal can improve efficiency, it also a causes selection 

bias. Third, extreme weights can be prevented by setting a limit to the weights. This is known as 

truncation or trimming (e.g., Lee, Lessler, & Stuart, 2011). Typically, a percentile limit is used based 

on the distribution of the weights before truncation. Accordingly, weights above a certain percentile 

are changed to the weight of the percentile limit. Typical percentile limits are 0.99, 0.98 or 0.95. 

While truncation indeed improves efficiency, the weight estimates are now biased. 

In conclusion, MSMs give unbiased estimates of average treatment effects, but they are inefficient. 

Hence, several analysis strategies have been developed to improve efficiency, but they often achieve 

this at the cost of increased bias.  
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1.4 Structural nested mean model 
SNMMs are a family of models for estimating how much each treatment exposure of a treatment 

history adds to the average effect of a treatment history (Hernán et al., 2004; Vansteelandt et al., 

2014). The effect of a treatment exposure is called a ‘blip’. Conceptually, the effect of a treatment 

history results from these blips. We emphasize that each blip is estimated as the effect of a 

treatment exposure for those who were exposed to the treatment, which is an ATT. The estimation 

of the blips consists of three steps. First, we define a structural model that links the average 

differences in potential outcomes between treatment histories to the blips. Second, g-estimation is 

used to estimate the blips based on the confounder and treatment histories. These estimates will be 

unbiased if the (weak) sequential conditional exchangeability assumption is true (Robins & Hernán, 

2009). We describe the idea of a blip, a structural model and g-estimation in more detail in the 

following paragraphs. 

1.4.1 Structural model 

We first define a structural model where the differences between the potential outcomes of two 

treatment histories are linked to the blips of treatment exposures (Vansteelandt et al., 2014, p. 714). 

We continue with our example from the introduction, which has four possible treatment histories (�̅�2 

= (0,0), �̅�2 = (1,1), �̅�2 = (1,0) or �̅�2 = (0,1)). How the two treatment exposures z1 and z2 of treatment 

history 𝑧̅2 affect the outcome Y can be formally described in a structural model with equations 6 and 

7. 

𝐸[𝑌(�̅�2 = (𝑧1, 0)) − 𝑌(�̅�2 = (0,0))|𝑍1 = 𝑧1] = 𝜓0𝑧1 (6) 

𝐸[𝑌(�̅�2 = (𝑧1, 𝑧2)) − 𝑌(�̅�2 = (𝑧1, 0))| 𝑍1 = 𝑧1, 𝑍2 = 𝑧2 ] = 𝜓1𝑧2 + 𝜓2𝑧1𝑧2  (7) 

In equation 6 blip 𝜓0 describes the average change in Y if z1=1 for the population with z1=1. In 

equation 7 blip 𝜓1 describes the average change in Y if z2=1 for the population with z2=1. The sum of 

blips 𝜓0, 𝜓1 and 𝜓2 describes the average change in Y if z1=1 and z2=1 for the population with z1=1 

and z2=1. The inclusion of 𝜓2 allows for the treatment exposures z1 and z2 to have an interaction 

effect (Daniel et al., 2013, p. 1615). 𝜓2 can be set to zero if the average change resulting from 

treatment history 𝑧2̅ = (1,1) is thought to be equal to 𝜓0+𝜓1. 

1.4.2 g-estimation 

g-estimation was developed as an estimator for SNMMs and consists of three steps. First, equations 

are defined for estimating each respondent’s potential outcome as if he or she is always in the 

control condition (Robins, Mark, & Newey, 1992; Vansteelandt et al., 2014, p. 708). Second, each 

respondent’s potential outcome is then used in the equations that predict the treatment exposures. 

Under the (weak) sequential conditional exchangeability assumption, the true potential outcomes of 

respondents should not contribute to the prediction of treatment exposures. Third, based on the 

equations from step 2, we use a search grid algorithm to procure unbiased blip estimates and 

accordingly each respondent’s unbiased potential outcome estimate. Appendix B shows a worked-

example of g-estimation of a time-fixed treatment. 

We continue with our example described in equation 6, equation 7 and Figure 3. For the first step, 

equations 6 and 7 are rearranged as if we were estimating the potential outcome of being in the 
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control condition (i.e., not treated) for each respondent i. The rearrangement of equation 6 is shown 

in equation 8. 

𝑌2𝑖 
∗ (𝑍1𝑖 = 0, 𝑍2𝑖 = 0) = 𝑦2𝑖 −  𝜓0𝑧1𝑖 

− 𝜓1𝑧2𝑖 − 𝜓2𝑧1𝑖𝑧2𝑖 
 (8) 

The left-hand side of equation 8 is the potential outcome of respondent i of being in the control 

condition at t=1 and t=2. The right-hand side is the observed outcome Y2i minus the blip 𝜓0 of 

treatment exposure z1i, the blip 𝜓1 of treatment exposure z2i, and the blip 𝜓2 of having been exposed 

to both treatments, z1i and z2i. These blips are subtracted from 𝑦2𝑖  based on treatment exposures at 

t=1 and t=2. If respondent i has always been in the control condition, the potential outcome is equal 

to the observed outcome y2i. Equation 8 is used for estimating blip 𝜓0. Blip 𝜓1 and 𝜓2 are estimated 

with equation 9, the rearrangement of equation 7. 

𝑌2𝑖
∗ (𝑍1𝑖 = 𝑧1𝑖, 𝑍2𝑖 = 0) = 𝑦2𝑖 −  𝜓1𝑧2𝑖 − 𝜓2𝑧1𝑖𝑧2𝑖 

 (9) 

The left-hand side of equation 9 is the potential outcome of respondent i being in the control 

condition for the second treatment, z2i=0. The right-hand side is the observed outcome y2i minus the 

blip 𝜓1 of treatment exposure z2i and the blip 𝜓2 of having been exposed to both treatments, z1i and 

z2i. These blips are subtracted from 𝑦2𝑖  based on treatment exposure at t=1 and t=2. If respondent i 

was in the control condition at t=2, the potential outcome is equal to the observed outcome y2i. This 

equation is used for estimating blip 𝜓1 and 𝜓2. 

As equations 8 and 9 show, g-estimation starts from each respondent’s potential outcome as if he or 

she was not treated, which is either observed or estimated. We note that this approach assumes that 

the blip values are constant on average across all respondents. This assumption is required to 

estimate each respondent’s potential outcome of being in the control condition and is called the 

constant treatment effect assumption (see Appendix C). 

In the second step of g-estimation, each respondent’s potential outcome of being in the control 

condition is used to predict treatment exposures (Robins et al. 2000). The blips 𝜓0, 𝜓1 and 𝜓2 in 

equations 8 and 9 are therefore replaced with candidate values 𝜓0
†, 𝜓1

† and 𝜓2
†. When using the 

candidate values 𝑌2𝑖 
∗ (𝑍1𝑖 = 0, 𝑍2𝑖 = 0) becomes 𝐻𝑖(𝜓0

†, 𝜓1
†, 𝜓2

† ), whereas 𝑌2𝑖 
∗ (𝑍1𝑖, 𝑍2𝑖 = 0) 

becomes 𝐻𝑖(𝜓1
†, 𝜓2

† ). These respondents’ potential outcomes of being in the control condition, 

based on the candidate values, are used to predict treatment exposure at t=1 and t=2. 

𝑃[𝑍1𝑖|𝐻𝑖(𝜓0
†, 𝜓1

†, 𝜓2
†), 𝑙1𝑖] =  𝛼0 + 𝛼1𝐻𝑖(𝜓0

†, 𝜓1
†, 𝜓2

†) + 𝛼2𝑙1𝑖 (10) 

𝑃[𝑍2𝑖|𝐻𝑖(𝜓1
†, 𝜓2

†), 𝑙1𝑖, 𝑙2𝑖, 𝑧1𝑖] =  𝛼3 + 𝛼4𝐻𝑖(𝜓1
†, 𝜓2

†) + 𝛼5𝑙1𝑖 + 𝛼6𝑙2𝑖 + 𝛼7𝑧1𝑖 (11) 

Equation 10 links the probability of treatment exposure Z1i to an intercept with parameter α0, 

𝐻𝑖(𝜓0
†, 𝜓1

†, 𝜓2
†) with parameter α1, and confounder Li with parameter α2. Of main interest is that α1 is 

zero under the sequential conditional exchangeability assumption if 𝐻𝑖(𝜓0
†, 𝜓1

†, 𝜓2
†) is an unbiased 

estimate of 𝑌2𝑖 
∗ (𝑍1𝑖 = 0, 𝑍1𝑖 = 0). Accordingly, α1 is zero for unbiased estimates of blips 𝜓0, 𝜓1 

and 𝜓2. For the (weak) sequential conditional exchangeability assumption states that the potential 

outcome of being in the control condition should not predict treatment exposure after conditioning 

on treatment and confounder histories. Equation 11 is set up in the same way as equation 10. Hence, 
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g-estimation uses the (weak) sequential conditional exchangeability assumption in equations 

predicting treatment exposures to procure unbiased estimates of respondents’ potential outcomes 

of being in the control condition. 

But how to find the values for 𝜓0
†, 𝜓1

† and 𝜓2
† that are unbiased estimates of 𝜓0, 𝜓1 and 𝜓2? In the 

third step g-estimation uses a search grid algorithm (Robins & Hernán, 2008, p. 581), which implies 

that different candidate values should simply be tried until α1 = 0 and α4 = 0. While this approach is 

certainly possible, closed form solutions have been developed with Generalized Estimating Equations 

(GEEs).  

Compared to the g-formula, SNMMs do not need to estimate 𝑃(�̅�𝑡 = 𝑙�̅�  |�̅�𝑡−1 = 𝑧�̅�−1, �̅�𝑡−1 = 𝑙�̅�−1 ) 

from the g-formula, bypassing the data sparseness caused by stratification on both treatment and 

confounder histories (Daniel et al., 2013, pp. 1614-1615). Rather, g-estimation directly uses the 

prediction of treatment probabilities to estimate average treatment effects. Accordingly, to satisfy 

the positivity assumption it suffices to have respondents with equal probabilities across treatment 

conditions for an area of common support. It is important to note that in g-estimation the closer 

respondents’ treatment probabilities are to the extremes (0 or 1), the less they contribute to the blip 

estimates. Rather, when respondents have a probability of 0.50 they contribute most to the 

estimation of blips (Vansteelandt et al., 2014, pp. 716-718). However, under the constant treatment 

effect assumption, the blip estimates should be unbiased, for the blips are constant on average 

across all respondents. As a last note, to increase efficiency, it is possible to include the confounders 

as predictors in equations 8 and 9 of the first step (a form of double robustness, e.g., Moodie, 

Richardson, & Stephens, 2007). 

1.5 Comparison marginal structural mean model and structural nested 

mean model 
Both the MSMM and SNMM are models for estimating average treatment effects of time-varying 

treatments. At first glance, both models are highly similar, for the first step of each model is to define 

a structural model, whereas the second step of each model is the application of an estimator. 

However, it is precisely in their structural model and estimator that both models differ. 

For the structural model, the parameters of the MSMM describe the marginal means of different 

treatment histories (Robins & Hernán, 2009). It is only after estimating the marginal means that the 

average treatment effect is estimated by subtracting two marginal means. However, the parameters 

of the SNMM directly estimate differences between treatment conditions at each time point of a 

treatment history (Vansteelandt et al., 2014, p. 714). No marginal means are estimated with the 

SNMM. Hence, a researcher should think carefully on whether marginal means are of interest when 

choosing between MSMMs and SNMMs. 

The structural models of the MSMM and SNMM also differ for which population the average 

treatment effect is estimated. The MSMM estimates the ATE, an average effect for the entire 

population (Hernán et al., 2000; Robins et al., 2000). Unbiasedness depends on the (regular) 

sequential conditional exchangeability assumption. The SNMM estimates the ATT, an average effect 

for that part of the population exposed to a treatment (Hernán et al., 2004; Vansteelandt et al., 

2014). Unbiasedness depends on the weak sequential conditional exchangeability assumption. 
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Therefore, both models have different estimands and assumptions, and, dependent on the research 

question, either the MSMM or the SNMM may be more appropriate. 

The differences in estimators of the MSMM and SNMM also cause differences in applicability. The 

MSMM uses IPTW (Imbens, 2000, p. 708; Rosenbaum & Rubin, 1983), which can be done with most 

statistical software for estimating propensity scores and weighting. Many researchers are also 

familiar with sampling weights (e.g., Pfeffermann, 1993), which makes IPTW seem familiar. The 

reverse is true for SNMM, which uses g-estimation. Software for g-estimation is relatively rare and its 

application is unfamiliar (e.g., Joffe, 2012; Vansteelandt et al., 2014, p. 12). Hence, based on the 

ubiquity of available software and familiarity of weighting, the MSMM is more enticing to use. 

However, while both estimators give unbiased average treatment effects, the MSMM lacks 

efficiency. This lack of efficiency is caused by single sample imbalance by chance, extremely large 

weights for respondents with extreme propensity scores, and weight variance of earlier treatment 

exposures being transmitted to later treatment exposures. While several analysis strategies can be 

used to improve efficiency, these often come at the cost of bias. Because SNMMs do not use IPTW, 

they are not subject to the efficiency problems that plague MSMMs. However, to achieve this 

efficiency, the SNMM leans heavily on the constant treatment effect assumption (Vansteelandt et al., 

2014, pp. 716-718), which assumes that the average effect would be the same for all respondents on 

average. 

Despite the differences in the structural model and estimators, both models account for confounder 

histories and treatment histories. Accordingly, it is tenable to assume that many paths resulting from 

colliding variables in a confounder history are accounted for in both models (Hernán et al., 2004; 

Pearl, 2009, pp. 16-18). Furthermore, they will not cause blocking of a treatment effect, for they only 

condition on confounders preceding the last treatment exposure of a treatment history 

(Vansteelandt, Joffe, & others, 2014, p. 728). Both are also less stringent in the positivity assumption 

than the g-formula, only requiring overlap in treatment probabilities. In conclusion, both the SNMMs 

and MSMM are appropriate methods for estimating average treatment effects of time-varying 

treatments. However, the differences in estimands, assumptions, efficiencies and bias between both 

models should be considered when applying these models. 

2 Simulation study 
The simulation study had three objectives. The first was to show how regression models give biased 

average effect estimates of time-varying treatments, and how MSMMs and SNMMs give unbiased 

average effect estimates. The second objective was to show how MSMMs and SNMMs differ in 

efficiency and bias when different analysis strategies are used. The third objective was to show how 

MSMMs and SNMMs are applied, this includes software usage and analysis strategies. 

2.1 Data generation 
As a first step, four scenarios with a time-varying treatment were simulated. Each scenario stepwise 

added a time-fixed confounder (X0), a time-varying confounder (Y0 and Y1) and a collider (U0) to the 

former scenario. There were 1.000 simulations per scenario. All continuous variables were generated 

with a standard normal distribution, whereas all dichotomous variables were generated with a 
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logistic distribution and a variance of π²/3. In the following paragraphs the four scenarios are further 

explained and supported by DAGs in Figure 3. 

 

Figure 3. Four scenarios simulated datasets time-varying treatment. 

 

In the first dataset, a time-varying treatment (Zt) with two time-points (t=1 and t=2) was generated 

with an average effect of 0.30 for early treatment (Δ(1,0)) and 0.50 for late treatment (Δ(0,1)). The 

other variables (Y0 Y1, X0, and U0) had no confounding relationship with the outcome (Y2) in this 

dataset. Hence, the first dataset represented a scenario where Zt was unconfounded with Y2. 

In the second dataset, each unit change in a time-fixed variable (X0) changed the logit probability of 

the first treatment exposure (Z1) and second treatment exposure (Z2) with 0.40. Each unit change in 

the same time-fixed variable (X0) also changed the outcome (Y2) with 0.20. Hence, the second dataset 

represented a scenario where Zt was confounded with Y2 by time-fixed confounder X0. 

In the third dataset, we changed how the time-varying treatment (Zt) affected the outcome (Y2). Zt 

was made to affect and to be affected by the time-varying outcome measure (Yt). Accordingly, a unit 

change in Yt-1 changed the logit probability of the treatment exposure (Zt) with 0.80. A unit change in 

Zt also changed Yt with 0.50. Furthermore, a unit change in Y0 changed Y1 with 0.40, whereas a unit 

change in Y1 changed Y2 with 0.60. These relations caused the effect of Z1 on Y2 to be mediated 

through Y1, which makes the average effects equal to the first and second datasets. Hence, the third 

dataset represented a scenario where Zt was confounded with Y2 by a time-fixed confounder X0 and a 

time-varying confounder Yt. 

In the fourth dataset, a unit change in an unmeasured variable (U0) changed the intermediate 

measure (Y1) and the final measure (Y2) of the outcome with 0.30. However, the unmeasured variable 

(U0) was unrelated to any other variable. Hence, the fourth dataset represented the same scenario as 

the third dataset, but Y1 was now a collider.  

2.2 Data analyses 
Five models were applied to the simulated datasets: three linear regression models, a MSMM and a 

SNMM. The first regression model had no covariates and served as a reference for what would 

happen when not accounting for confounders. The second regression model illustrated how 

estimates are biased when only controlling for covariates that precede the time-varying treatment. 

The third regression model illustrated how estimates are biased when controlling for all variables 

measured during the time-varying treatment. Accordingly, a MSMM and a SNMM were also applied 

to the simulated datasets. 

Two points need mentioning before we describe these models any further. First, average treatment 

effects of MSMMs, SNMMs and linear regression models are defined differently. A MSMM estimates 
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the ATE, a SNMM estimates the ATT, whereas regression models estimate conditional effects. 

However, because there was no interaction between the treatment effect and the confounders in 

any scenario, the ATE, ATT and conditional effects were equal. Second, in this simulation the average 

treatment effect Δ(1,1), was equal to summing Δ(1,0) and Δ(0,1). Accordingly, we decided not to 

discuss Δ(1,1) for brevity. 

2.2.1 Linear regression models 

The three linear regression models related the outcome (Y2) with an identity link function to the 

treatment history (�̅�2) and to a linear combination of the time-fixed confounder (X0) and the time-

varying confounder (Yt).  

The first linear regression model was the no covariates model (reg. 1): 

𝑦2𝑖 = 𝛽0 + 𝛽1𝑧1𝑖  + 𝛽2𝑧2𝑖  + 𝜀𝑖  
 (12) 

The second linear regression model was the time-fixed covariates model (reg. 2): 

𝑦2𝑖 = 𝛽0 + 𝛽1𝑧1𝑖  + 𝛽2𝑧2𝑖  + 𝛽3𝑥0𝑖 + 𝛽4𝑦0𝑖 + 𝜀𝑖  
 (13) 

The third linear regression model was the time-varying covariates model (reg. 3): 

𝑦2𝑖 = 𝛽0 + 𝛽1𝑧1𝑖  + 𝛽2𝑧2𝑖 + 𝛽3𝑥0𝑖 + 𝛽4𝑦0𝑖 + 𝛽5𝑦1𝑖 + 𝜀𝑖 
 (14) 

For estimating the parameters of the linear regression models, maximum likelihood was used in R 

3.4.3. An independent and normally distributed error distribution was specified for each model. 

2.2.2 Marginal structural mean model 

The first step in applying the MSMM was linking the marginal mean of each treatment history to a 

structural model with the following equation: 

E[𝑌2(𝑧1, 𝑧2)] = 𝛽0  + 𝛽1𝑧1  + 𝛽2𝑧2 (15) 

In this equation E[𝑌2(𝑧1, 𝑧2)] was the marginal mean, whereby parameters β1 and β2 described the 

ATEs of early treatment Δ(1,0) and late treatment Δ(0,1). β0 was equal to the never treated 

treatment history �̅�2 = (0,0). 

The second step was weight estimation with the following equation: 

𝑆𝑊̅̅̅̅
2̅ = 𝑆𝑊1 ∗ 𝑆𝑊2 =

P[𝑍1=1]

P[𝑍1 = 1|𝑦0, 𝑥0]
∗

P[𝑍2 = 1|𝑧1]

P[𝑍2 = 1|𝑦0, 𝑦1, 𝑥0, 𝑧1]
 (16) 

In this equation 𝑆𝑊̅̅̅̅
2̅ was the total weight at t=2, whereas 𝑆𝑊1 and 𝑆𝑊2 were the time-specific 

stabilized weights a t=1 and t=2. 𝑆𝑊1. The probabilities were estimated with logistic regression 

models. 

For estimating the parameters of the structural model, a linear regression model with maximum 

likelihood estimation was used. The total weights 𝑆𝑊̅̅̅̅
2̅ were incorporated in the estimation 

procedure. The models were estimated in R 3.4.3. 
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2.2.3 Structural nested mean model 

The first step in applying the SNMM was linking the blips of each treatment exposure to a structural 

model with the following equations: 

E[𝑌2(𝑧1, 0) − 𝑌2(0,0)|𝑧1] = 𝜓0𝑧1 (17) 

E[𝑌2(𝑧1, 𝑧2) − 𝑌2(𝑧1, 0)|𝑧1, 𝑧2 ] = 𝜓1𝑧2 (18) 

Equation 17 was the ATT of early treatment Δ(1,0), described by blip 𝜓0, whereas equation 18 was 

the ATT of late treatment Δ(0,1), described by blip 𝜓1.  

The second step in applying the SNMM was g-estimation with the following equations: 

logit(P[𝑍1 = 1|𝐻(𝜓0
†, 𝜓1

†), 𝑥0, 𝑦0]) = 𝛼0 + 𝛼1𝐻(𝜓0
†, 𝜓1

†) + 𝛼2𝑥0 + 𝛼3𝑦0 (19) 

logit(P[𝑍2 = 1|𝐻(𝜓1
†), 𝑥0, 𝑦0, 𝑦1, 𝑧0]) = 𝛼4 + 𝛼5𝐻(𝜓1

†) + 𝛼6𝑥0 + 𝛼7𝑦0 + 𝛼8𝑦1 + 𝛼9𝑧0 (20) 

In equation 19 𝐻(𝜓0
† , 𝜓1

†) was the observed outcome Y2 minus candidate values for the blips 𝜓0 and 

𝜓1. In equation 20 𝐻(𝜓1
†) was the observed outcome Y2 minus candidate values for the blip 𝜓1.  

g-estimation of the structural model was achieved by using the ‘DTRreg’ package in R 3.4.3, which 

uses an optimization algorithm for finding the blips. 

2.2.4 Bias and variance average effect estimates 

Bias and variance were assessed for Δ̂(1,0) and Δ̂(0,1). Bias was estimated by subtracting the 

generated average effect of a treatment history (Δ) with the Monte Carlo mean (Δ̅) of the average 

effect estimates (Δ̂). The Monte Carlo mean was calculated as: 

Δ̅ =
∑ Δ̂𝑖

𝑟
𝑖=1

𝑟
 (21) 

where r was the number of simulations and Δ̂𝑖 was the estimate of an average treatment effect of a 

single replication. The variance in the average effect estimates was calculated as: 

𝑉𝑎𝑟Δ =
∑ (Δ̂𝑖−Δ̅)²𝑟

𝑖=1

𝑟−1
 (22) 

2.3 Results comparing regression models, MSMM and SNMM 

Table 3 and Figures 4, 5, 6 and 7 show the bias and variance of Δ̂(1,0) and Δ̂(0,1) when using the 

different models. Whether and why these models were biased when applied to the four simulated 

datasets is described in the following paragraphs.  



 

24 

 

 

Figure 4. Boxplots Monte Carlo (M.C.) estimates average effects of treatment histories on 

outcome Y2 in no confounders scenario. The horizontal line in each panel shows the true 

average effect. 

 

 

Figure 5. Boxplots Monte Carlo (M.C.) estimates of average effects on outcome Y2 in time-

fixed confounder scenario. The horizontal line in each panel shows the true average effect. 
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Figure 6. Boxplots Monte Carlo (M.C.) estimates of average effects on outcome Y2 in time-

varying confounder scenario. The horizontal line in each panel shows the true average effect. 

 

Figure 7. Boxplots Monte Carlo (M.C.) estimates of average effects on outcome Y2 in collider 

scenario. The horizontal line in each panel shows the true average effect. 

Table 3 

Comparison of bias, variance and MSE average effect estimates of treatment histories on outcome Y2 

in 5 models. 

 Reg. 1 Reg. 2 Reg. 3 MSMM SNMM 

Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1) 

 No confounders dataset (1) 

Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SD 0.06 0.06 0.05 0.05 0.05 0.09 0.08 0.09 0.08 0.06 

MSE 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 

 Time-fixed confounder dataset (2) 

Bias 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SD 0.06 0.06 0.06 0.05 0.05 0.04 0.09 0.08 0.08 0.08 

MSE 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

 Time-varying confounder dataset (3) 

Bias 0.17 0.43 -0.03 0.32 -0.30 0.00 0.00 0.00 0.00 0.00 

SD 0.05 0.05 0.06 0.05 0.04 0.04 0.11 0.10 0.08 0.07 

MSE 0.03 0.19 0.00 0.11 0.09 0.00 0.01 0.01 0.01 0.00 

 Collider dataset (4) 

Bias 0.16 0.50 -0.03 0.39 -0.36 0.00 0.00 0.00 0.00 0.00 

SD 0.05 0.05 0.05 0.05 0.04 0.03 0.12 0.10 0.08 0.06 

MSE 0.03 0.25 0.00 0.16 0.13 0.00 0.01 0.01 0.01 0.00 

Note. Reg. 1 = No confounders regression model; Reg. 2 = Time-fixed confounders regression model; 

Reg. 3 = Time-varying confounders regression model; MSMM = Marginal structural mean model; 

SNMM = Structural nested mean model; Δ̂(1,0) = Average effect treatment history (1,0); Δ̂(0,1) = 

Average effect treatment history (0,1); SD = Standard deviation; MSE = Mean squared error 

 

The no covariates regression model gives unbiased estimates for the no confounders dataset (1). 

However, the model is biased for the time-fixed confounders dataset (2), time-varying confounders 
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dataset (3) and collider dataset (4). This bias is caused by not accounting for the confounding effects 

of the time-fixed confounder X0, time-varying confounder Yt and collider U0. 

The time-fixed covariates regression model gives unbiased estimates for the no confounders dataset 

(1) and time-fixed confounders dataset (2). However, the model is biased for the time-varying 

confounders dataset (3) and collider dataset (4). This bias is caused by not accounting for the 

confounding effects of the time-varying confounder Yt and collider U0. 

The time-varying covariates regression model gives unbiased estimates for the no confounders 

dataset (1) and time-fixed confounders dataset (2). It also gives unbiased estimates for Δ(0,1) for the 

time-varying confounders dataset (3) and collider dataset (4). However, the model is biased for 

Δ(1,0) for the time-varying confounders dataset (3) and collider dataset (4). This bias is caused by 

using Y1 as a covariate, blocking the effect of Z1 on Y2, which biases Δ̂(1,0). Furthermore, the model 

does not account for the confounding effect of collider U0. 

The MSMM and SNMM are unbiased when applied to the no confounders dataset (1), time-fixed 

confounders dataset (2), time-varying confounders dataset (3) and collider dataset (4). 

In conclusion, we illustrated that when estimating average treatment effects of a time-varying 

treatment with a time-varying confounder and a collider, suitable methods are required. However, 

the variance of the estimates when using these suitable methods, the MSMM and the SNMM, are 

larger compared to the regression models. This requires a further inquiry on analysis strategies to 

decrease variance in the estimates when using MSMMs and SNMMs. 

2.4 Results extreme propensity score removal, truncation and doubly 

robust estimation 

Table 4 and Figure 8 show the bias and variance of Δ̂(1,0) and Δ̂(0,1) when using 99th or 95th 

percentile truncation, removing extreme propensity scores (PS<0.05, PS>0.95), and including the 

baseline confounders when using MSMMs. Table 4 and Figure 8 also show the bias and variance of 

Δ̂(1,0) and Δ̂(0,1) when using SNMMs, with and without double robust estimation. The results are 

discussed in the following paragraphs. 

 

Figure 8. Boxplots Monte Carlo (M.C.) estimates of average effects on outcome Y2 across 

MSMMs and SNMMs using different analysis strategies. The horizontal line in each panel 

shows the true average effect. 
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Table 4 

Comparison of bias, variance and MSE average effect estimates of treatment histories on outcome Y2 

using MSMMs and SNMMs with either extreme propensity removal, truncation or doubly robust 

estimation. 

Model 

Cut-off 

Trunc. 

DR 

MSMM 

 

 

 

MSMM 

 

 

Yes 

MSMM 

 

.01 

 

MSMM 

 

.05 

 

MSMM 

.05-.95 

Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1) 

Bias 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.09 -0.02 0.00 

SD 0.12 0.10 0.10 0.09 0.10 0.09 0.09 0.08 0.12 0.10 

MSE 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Model 

Cut-off 

Trunc. 

DR 

SNMM 

 

 

 

SNMM 

 

 

Yes 

   

Δ̂(1,0) Δ̂(0,1) Δ̂(1,0) Δ̂(0,1)       

Bias 0.00 0.00 0.00 0.00       

SD 0.07 0.06 0.06 0.05       

MSE 0.01 0.01 0.01 0.01       

Note. MSMM = Marginal structural mean model; SNMM = Structural nested mean model; Cut-off .05-

.95 = Removal of sampling unit when probability less than 0.05 or 0.95 for first treatment exposure or 

second treatment exposure; Trunc. .01 = Truncation of time-specific weight to 0.01; Trunc. .05 = 

Truncation of time-specific weight to 0.05; DR = doubly robust estimation for SNMM and including 

baseline confounders MSMM; Δ̂(1,0) = Average effect treatment history (1,0); Δ̂(0,1) = Average effect 

treatment history (0,1); SD = Standard deviation; MSE = Mean squared error 

 

First, we discuss the MSMMs. When we used 99th percentile truncation the variance of Δ̂(1,0) 

decreased 28.24%, whereas the variance of Δ̂(0,1) decreased 30.79%. Δ̂(1,0) was now biased with -

1.20%, whereas Δ̂(0,1) was biased 5.57%. When we used 95th percentile truncation the variance of 

Δ̂(1,0) decreased 43.38%, whereas the variance of Δ̂(0,1) decreased 47.26%. Δ̂(1,0) was now biased 

1.68%, whereas Δ̂(0,1) was biased 17.94%. When we included baseline confounders in the structural 

model the variance of Δ̂(1,0) decreased 27.69%, whereas the variance of Δ̂(0,1) decreased 31.08%. 

Δ̂(1,0) was now biased -0.67%, whereas Δ̂(0,1) was biased 0.94%. When we removed extreme 

propensity scores (PS<0.05 or PS >0.95) the variance of Δ̂(1,0) increased 2.40%, whereas the variance 

of Δ̂(0,1) increased 2.70%. Δ̂(1,0) was now biased -8.11%, whereas Δ̂(0,1) was biased -0.17%. 

Lastly, we applied SNMMs with and without doubly robust estimation. Doubly robust estimation 

caused no tangible for early treatment Δ(1,0) or late treatment Δ(0,1). The variance decreased 

25.23% for Δ̂(1,0) and 39.49% for late treatment Δ̂(0,1).  

In conclusion, the results illustrate that both truncation and to inclusion of baseline confounders in 

the structural model substantially reduce variance in the estimates of MSMMs. However, truncation 

achieves this at the cost of increased bias, especially 95th percentile truncation. This trade-off does 

not occur for the inclusion of baseline confounders in the structural model, it only reduced variance. 

Surprisingly, removing extreme propensity scores does not decrease the variance, whereas bias does 
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increase. That this removal does not decrease variance may be specific to our simulated dataset, 

because the overlap between treatment conditions is quite high. For SNMMs doubly robust 

estimation reduces variance with no apparent trade-off. Comparing the MSMMs with the SNMMs 

shows that the latter always has a lower variance. However, the MSMMs are always less biased than 

the regression models in the former section.  

3 Empirical study 

3.1 Introduction 
The empirical study on track effects had three objectives. The first was to show how the conditional 

exchangeability assumption and positivity assumption are used in an applied study. The second 

objective was to introduce an often-encountered type of time-varying treatment, a monotonic time-

varying treatment. The third objective was to show how MSMMs and SNMMs are applied, this 

includes software usage and analysis strategies.  

The research question of this empirical study was how being in a higher track affects academic 

performance and academic self-concepts. Our first hypothesis was that higher track allocation 

benefits students’ academic performance. Our second hypothesis was that higher track allocation 

negatively affects students’ academic self-concept. For the hypotheses of track change, we based 

ourselves on the prevailing thought that track changes have negative effects. Accordingly, our third 

hypothesis was that downward track change negatively affects academic performance. Our fourth 

hypothesis was that downward track change negatively affects academic self-concept. In the 

following section the sample and methods are described in more detail. 

3.2 Methodology 

3.2.1 Sample 

This study used a sample of 6328 students who were in the first year of secondary education in 

September 2013, using data from the longitudinal LiSO-project (LiSO-project, 2018). A subsample was 

taken where students from de-tracked schools, students in a sports or arts program and students 

who were redoing their first year in secondary education were removed. Hence, our final subsample 

consisted of 5417 students. At the start of secondary education 1419 students were in the classical 

track, 2229 were in the modern track, 1033 students were in the technical track and 736 students 

were in the vocational track. There were five measurement occasions: the start of secondary 

education September 2013 (T0), the end of the first year of secondary education May 2014 (T1), the 

end of the second year of secondary education May 2015 (T2), the end of the third year of secondary 

education May 2016 (T3), and the end of the fourth year of secondary education May 2017 (T4).  

3.2.2 Variables 

3.2.2.1 Treatment variable 

The treatment variable was track allocation to the lower track. Lower track allocation was the active 

treatment condition (Zt = 1), whereas higher track allocation was the control condition (Zt = 0). It was 

not possible to compare nonconsecutive tracks due to the absence of comparable students (this will 

be further explained in the section ‘Area of common support’). Three pairwise comparisons were 

made: the classical track with the modern track, the modern track with the technical track, and the 
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technical track with the vocational track. For each comparison of two tracks, five track allocation 

histories were distinguished: staying in the higher track continuously (0,0,0,0), starting in the higher 

track but changing to the lower track after T3 (0,0,0,1), starting in the higher track but changing to 

the lower track after T2 (0,0,1,1), starting in the higher track but changing to the lower track after T1 

(0,1,1,1) and staying in the lower track continuously (1,1,1,1). These track allocation histories are also 

shown in Table 5 for each comparison. 

Table 5 

Overview track allocation histories of classical and modern track comparison, modern and technical 

track comparison, and technical and vocational track comparison. 

Track allocation history T1 T2 T3 T4 

Classical and modern track comparison     

Classical track continuous (0,0,0,0) 1240 978 673 608 

Classical to modern after T3 (0,0,0,1)    61 

Classical to modern after T2 (0,0,1,1)   291 281 

Classical to modern after T1 (0,1,1,1)  242 223 196 

Modern track continuous (1,1,1,1) 955 881 728 652 

To other program  94 280 397 

     

Modern and technical track comparison     

Modern track continuous (0,0,0,0) 2182 1780 1304 1078 

Modern to technical track T3 (0,0,0,1)    187 

Modern to technical track T2 (0,0,1,1)   338 315 

Modern to technical track T1 (0,1,1,1)  284 219 192 

Technical track continuous (1,1,1,1) 887 691 586 541 

To other program  314 622 756 

     

Technical and vocational track comparison     

Technical track continuous (0,0,0,0) 1026 772 645 588 

Technical to vocational track T3 (0,0,0,1)    44 

Technical to vocational track T2 (0,0,1,1)   89 86 

Technical to vocational track T1 (0,1,1,1)  162 143 139 

Vocational track continuous (1,1,1,1) 544 497 473 454 

To other program  139 220 259 

     

Note: T1 = Number of students first year after removal extreme propensity scores; T2 = Number of 

students second year after removal extreme propensity scores; T3 = Number of students third year 

after removal extreme propensity scores; T4 = Number of students fourth year after removal extreme 

propensity scores 

 

3.2.2.2 Outcomes 

The first outcome of interest was student academic performance. Two measures for academic 

performance were used: academic performance in mathematics and Dutch reading comprehension. 

The second outcome of interest was student academic self-concept. Three measures for academic 

self-concept were used: general academic self-concept, self-concept in mathematics and self-concept 

in Dutch. So, five student outcomes were studied in total. 
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Mathematics performance was measured at T0, T1, T2, T3 and T4. The number of items ranged from 

32 to 42 and encompassed following domains: algebra, geometry, geometric calculation, and data- 

and information processing. The tests were based on the educational goals set by the government 

and are considered valid measurements in the Flemish context. Each test had a mix of multiple-

choice and open-ended questions. Item Response Theory was used during test development for 

vertical equating, to test for differential item functioning and to select items in a broad range of 

difficulty parameters with high discrimination parameters (Embretson & Reise, 2000). Ability scores 

were estimated using Warm’s weighted likelihood estimation (Warm, 1989). The classical, modern 

and technical track at T0 were used as a reference group with a mean of 100 and standard deviation 

of 10. The Cronbach’s Alphas of the tests ranged from 0.81 to 0.87. 

Dutch reading comprehension was developed and measured in a similar way as mathematics. 

However, it was measured only at T0 and T4, with the number of items ranging from 32 to 43. For a 

correct answer, students were required to either perform a descriptive analysis, structure text 

elements or give a personal judgement on different text elements. The texts also varied in complexity 

of sentence formulation, complexity of text structuring, extensiveness of the texts, extent of visual 

support, familiarity of content and if the text was more practical or abstract. This was based on the 

educational goals set by the government and the tests are considered valid in this context. The 

classical, modern and technical track at T0 were used as a reference group with a mean of 100 and 

standard deviation of 10. The Cronbach’s Alpha’s of the tests were 0.80 and 0.83.  

Academic self-concepts were measured at T0, T1, T2, T3 and T4. General academic self-concept was 

measured based on four items, which were translated to Dutch from the short form of general 

academic self-concept of the Self-Description Questionnaire II (Marsh, Ellis, Parada, Richards, & 

Heubeck, 2005). The items of the domain specific measures (self-concept for mathematics and self-

concept for Dutch) are based on the Self-Description Questionnaire III (Marsh & O’Neill, 1984), and 

are reduced to four of the original six items. Multiple group factor analyses in Mplus 8 were used to 

investigate measurement invariance across measurement occasions (Baumgartner & Steenkamp, 

2006; Cheung & Rensvold, 2002). The cutoff criteria from Hu and Bentler (1999) were used for fit 

indices CFI, TLI and RMSEA. Factor analyses showed that a one-factor structure with assumed 

measurement invariance fitted well for general academic self-concept (CFI= .99, TLI = .99, RMSEA = 

.04). Factor analyses showed that a one-factor structure with assumed measurement invariance 

fitted well for academic self-concept in mathematics. However, we were required to let two pairs of 

indicators freely correlate to achieve satisfactory model fit (CFI= .97, TLI = .97, RMSEA = .07). For 

academic self-concept in Dutch we did not find entirely satisfactory model fit for a one-factor 

structure with assumed measurement invariance (CFI= .94, TLI = .95, RMSEA = .09). However, there 

was no obvious way to improve model fit and we decided to use this as our final factor model. 

Composite reliabilities ranged from 0.77 to 0.84 for general academic self-concept, from 0.89 to 0.92 

for self-concept in mathematics and from 0.85 to 0.88 for self-concept in Dutch. Maximum a 

posteriori (MAP) estimation was used for student factor scores with a zero mean and unit variance in 

the whole sample at T0. 

3.2.2.3 Independent variables 

To satisfy the sequential conditional exchangeability assumption (Robins & Hernán, 2009) we needed 

to control for a selection of covariates. This selection of covariates should make it tenable that any 
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effect of the track allocation history on academic performance could not be ascribed to (time-

varying) confounders. We based our selection on the literature for causal inference of time-fixed 

exposures (e.g., Stuart, 2010). Most authors agree that all variables that predict both the treatment 

(i.e., track allocation and track change in this study) and the outcome (i.e., academic performance 

and academic self-concept) should be included. If sample size allows it, all variables related to the 

outcome should also be included (e.g., Brookhart et al., 2006; Myers et al., 2011; Stuart, 2010). 

Hence, we included those variables that predict academic performance and academic self-concept. 

Table 6 gives a brief overview of these variables. 
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Table 6 

 Descriptions, information sources and properties of time-varying and time-fixed confounder 

measures. 

Variable Description Info T0 T1 T2 T3 T4 

Mathematics IRT-score achievement in mathematics AT X X X X X 

Dutch 
IRT-score achievement in Dutch reading 

comprehension 

AT X    X 

French IRT-score achievement in French AT X     

Gender Indicator for boy OR X     

Age 
Indicator whether student is older than 

normally progressing 

OR X     

SES Factor score socioeconomic status PQ X     

Allowance 
Indicator whether family has an allowance 

due to low income 

OR X     

Education mother Indicator whether mother is lowly educated OR X     

Other language 
Indicator whether the home language is not 

Dutch 

OR X     

Global self-concept Factor score global academic self-concept SQ X X X X X 

Self-concept 

mathematics 
Factor score self-concept mathematics 

SQ X X X X X 

Self-concept Dutch Factor score self-concept Dutch SQ X X X X X 

Self-concept French Factor score self-concept French SQ X X X   

Wellbeing Factor score wellbeing SQ X X X X  

Mindset Factor score mindset SQ X X X X  

Autonomous 

motivation 
Factor score autonomous motivation 

SQ X X X X  

Controlled 

motivation 
Factor score controlled motivation 

SQ X X X X  

Behavioral 

engagement 
Factor score behavioral engagement 

SQ X X X X  

Emotional 

engagement 
Factor score emotional engagement 

SQ X X X X  

Behavioral 

disengagement 
Factor score behavioral disengagement 

SQ X X X X  

Emotional 

disengagement 
Factor score emotional disengagement 

SQ X X X X  

Interest mathematics Sum score interest in mathematics SQ X X X X  

Interest Dutch Sum score interest in Dutch SQ X X X X  

Interest French Sum score interest in French SQ X X X   

Interest technology Sum score interest in technology SQ X X X X  

Note: T0 = measured at T0; T1 = measured at T1; T2 = measured at T2; T3 = measured at T3; T4 = 

measured at T4; AT = achievement test; OR = official records; PQ = parental questionnaire; SQ = 

student questionnaire  

 

3.2.3 Area of common support 

Before estimating weights, we assessed the area of common support between the different track 

allocation histories of a track comparison. This should be considered a test of the positivity 

assumption. Accordingly, by assessing the area of common support it is tested whether comparable 

students exist across different track trajectories. This was achieved by first estimating the propensity 
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score of being continuously in the higher track. The overlap in the resulting propensity scores was 

then used to assess the area of common support (Steiner & Cook, 2013). Note that it was 

immediately clear that there was only a substantial area of common support between pairs of tracks 

that are consecutive in the hierarchy of tracks. Hence, as described in the ‘Treatment variable’ 

section, we made three pairwise comparisons of tracks. For each comparison a limited area of 

common support was found. Hence, when applying MSMMs, truncation or extreme propensity score 

removal should be used. We used a minimum of 0.05 and a maximum of 0.95 as cutoff values for 

extreme propensity score removal (e.g., Crump, Hotz, Imbens, & Mitnik, 2009). We also used 99th 

percentile truncation (e.g., Lee, Lessler, & Stuart, 2011). This step will be shown first in the results 

section. Because SNMMs automatically account for which treatment probabilities the area of 

common support is strongest, no students were removed for having extreme propensity scores when 

using SNMMs. 

3.2.4 Application marginal structural mean model 

3.2.4.1 Structural model 

The first step in applying the MSMM was linking the marginal mean of each treatment history to a 

structural model. For the marginal mean at measurement occasion T4 we have the following 

equation: 

E[𝑌4(𝑧1, 𝑧2, 𝑧3, 𝑧4)] = 𝛽0  + 𝛽1𝑧1𝑧2𝑧3𝑧4  + 𝛽2(1 − 𝑧1)𝑧2𝑧3𝑧4  + 𝛽3(1 − 𝑧1)(1 − 𝑧2)𝑧3𝑧4  +

𝛽4(1 − 𝑧1)(1 − 𝑧2)(1 − 𝑧3)𝑧4 + 𝜷5𝒙0 + 𝜷6𝒍0 (23) 

In this equation E[𝑌4(𝑧1, 𝑧2, 𝑧3, 𝑧4)] is the marginal mean, whereby parameters β1, β2, β3 and β4 

respectively describe the ATEs of track allocation histories (1,1,1,1), (0,1,1,1), (0,0,1,1) and (0,0,0,1). 

β0 is equal to the track allocation history of always being in the higher track (0,0,0,0). β5 and β6 are 

vectors of parameters describing the average change in marginal means for time fixed covariates in 

vector x0 and the baseline measurements for time-varying confounders in vector l0. Note that 

equivalent structural models were specified for the marginal means at measurement occasions T1, 

T2 and T3. 

For estimation we used GEEs with the Newton-Raphson algorithm. We specified an independent 

correlation matrix (Liang & Zeger, 1986) and estimated sandwich standard errors (Joffe, Ten Have, 

Feldman, & Kimmel, 2004). Note that either specifying a non-independent correlation structure or 

using mixed methods would make outcome measurements dependent on future treatment 

exposures, which would cause bias (Robins, Hernan, & Brumback, 2000, p. 554). Inverse probability 

treatment weights were incorporated into the model estimation. To examine differences between 

track allocation histories at each time point, contrasts were tested using one degree of freedom 

Wald tests (Kuhn, Weston, Wing, & Forester, 2016). GEE-models were estimated using the geepack 

1.2-1 package (Højsgaard, Halekoh, & Yan, 2006) in R 3.4.3. Cohen’s d was used for effect size 

interpretation (Cohen, 1977). 

3.2.4.2 Inverse probability treatment weighting 

The second step was weight estimation with the following equations for T4: 

𝑆𝑊̅̅̅̅
4̅ = 𝑆𝑊1 ∗ 𝑆𝑊2 ∗ 𝑆𝑊3 ∗ 𝑆𝑊4 = 
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P[𝑍1=1]

P[𝑍1 = 1|𝑦0, 𝒙0, 𝒍0]
∗

P[𝑍2 = 1|𝑍1 = 0]

P[𝑍2 = 1|𝑦0, 𝑦1, 𝒙0, 𝒍0, 𝒍1, 𝑍1 = 0]
 ∗

P[𝑍3 = 1|𝑍2 = 0]

P[𝑍3 = 1|𝑦0, 𝑦2, 𝒙0, 𝒍0, 𝒍2, 𝑍2 = 0]
∗

P[𝑍4 = 1|𝑍3 = 0]

P[𝑍4 = 1|𝑦0, 𝑦3, 𝒙0, 𝒍0, 𝒍3, 𝑍3 = 0]
 (24) 

In this equation 𝑆𝑊̅̅̅̅
4̅ was the total weight at t=4, and 𝑆𝑊1, 𝑆𝑊2, 𝑆𝑊3 and 𝑆𝑊4 were the time-specific 

stabilized weights. When we compare equation 24 to the weight estimation of the simulation study, 

an important difference is that the estimated probabilities are conditional on either 𝑍1 = 0, 𝑍2 = 0 

or 𝑍3 = 0. This change is caused by track allocation being a monotonic time-varying treatment. 

Therefore, reweighting is only necessary for students who can still change to a lower track at time t 

(i.e., students who were in the higher track at time t-1). When the time-specific weight was not 

estimated for a student (i.e., student was already in the lower track), it was replaced by value one 

(i.e., the total weight is unchanged). Note that, for the total weights at measurement occasions T1, 

T2 and T3, it was only necessary to multiply time-specific weights until that measurement occasion. 

To attain stable weights estimates we chose not to use the entire history of time-varying covariates 

but only their values at T0 and their values at time t-1 for track allocation at time t. We found that 

this was enough to balance the entire confounder history and stabilize the weight estimation. As 

mentioned, extreme propensity score removal and 99th percentile truncation were used as well. We 

used the twang 1.5 package (Ridgeway, McCaffrey, Morral, Griffin, & Burgette, 2017) in R 3.4.3 for 

weight estimation. To estimate the propensity score we used generalized boosted regression models 

(GBMs, McCaffrey, Ridgeway, & Morral, 2004), a nonparametric regression technique whith an 

automated and data-adaptive algorithm to predict propensity scores. Given that it automatically 

optimizes the predictive power of a set of covariates for the propensity scores, it is considered best 

practice for propensity score estimation (e.g., Stuart, 2010). However, for the technical and 

vocational track comparison we used the covariates as linear predictors, for this led to a better 

balance. 

We assessed balance after applying the weights with standardized mean differences of covariates 

(SMDs). The SMD is the difference between two observed confounder means of track allocation 

histories, which is then divided by the pooled SD of both track allocations histories (Rubin, 2001). The 

SMDs were assessed before and after applying weights. Mean SMDs should be no higher than 0.05, 

whereas SMDs of specific covariates as a rule of thumb should not exceed 0.25 (Caliendo & Kopeinig, 

2008).  

3.2.5 Application structural nested mean model 

3.2.5.1 Structural model 

The first step in applying the SNMM was linking the blips of each treatment exposure to a structural 

model with the following equations: 

E[𝑌4(𝑧1) − 𝑌4(0)|𝑧1] = 𝜓0𝑧1 (25) 

E[𝑌4(0, 𝑧2) − 𝑌4(0,0)|𝑧2 ] = 𝜓1𝑧2 (26) 

E[𝑌4(0,0, 𝑧3) − 𝑌4(0,0,0, )|𝑧3 ] = 𝜓2𝑧3 (27) 

E[𝑌4(0,0,0, 𝑧4) − 𝑌4(0,0,0,0)|𝑧4 ] = 𝜓3𝑧4 (28) 
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These equations were the ATTs of the different treatment exposures (i.e., initial track allocation to 

the lower and track change to the lower track), which are described by the blips 𝜓0, 𝜓1, 𝜓2 and 𝜓3. 

g-estimation of the structural model was achieved by using the ‘DTRreg’ package in R 3.4.3 (Wallace, 

Moodie, & Stephens, 2017), using an optimization algorithm for finding the blips. Cohen’s d was used 

for effect size interpretation (Cohen, 1977). 

g-estimation 

The second step in applying the SNMM was g-estimation with the following equations: 

logit(P[𝑍1 = 1|𝐻(𝜓0
†, 𝜓1

†, 𝜓2
†, 𝜓3

†), 𝑥0, 𝑙0]) = 𝛼0 + 𝛼1𝐻(𝜓0
†, 𝜓1

†, 𝜓2
†, 𝜓3

†) + 𝛼2𝑥0 + 𝛼3𝑙0 (29) 

logit(P[𝑍2 = 1|𝐻(𝜓1
†, 𝜓2

†, 𝜓3
†), 𝑙0, 𝑙1, 𝑥0, 𝑧1]) = 𝛼4 + 𝛼5𝐻(𝜓1

†, 𝜓2
†, 𝜓3

†) + 𝛼6𝑥0 + 𝛼7𝑙0 + 𝛼8𝑙1 +

𝛼9𝑧1 (30) 

logit(P[𝑍3 = 1|𝐻(𝜓2
†, 𝜓3

†), 𝑙0, 𝑙2, 𝑥0, 𝑧2]) = 𝛼10 + 𝛼11𝐻(𝜓2
†, 𝜓3

†) + 𝛼12𝑥0 + 𝛼13𝑙0 + 𝛼14𝑙2 + 𝛼15𝑧2 

(31) 

logit(P[𝑍4 = 1|𝐻(𝜓3
†), 𝑙0, 𝑙3, 𝑥0, 𝑧3]) = 𝛼16 + 𝛼17𝐻(𝜓3

†) + 𝛼18𝑥0 + 𝛼19𝑙0 + 𝛼20𝑙3 + 𝛼21𝑧3 (32) 

In these equations 𝐻(𝜓0
†, 𝜓1

†, 𝜓2
†, 𝜓3

†), 𝐻(𝜓1
†, 𝜓2

†, 𝜓3
†), 𝐻(𝜓2

†, 𝜓3
†) and 𝐻(𝜓3

† ) each represent the 

observed outcome Y4 minus candidate values for the blips 𝜓0, 𝜓1, 𝜓2 and 𝜓3. 

3.2.6 Missing values 

In our sample, 10.89% of the data was missing on average. We used multiple imputation by chained 

equations to attain unbiased and efficient estimates for missing values in the covariates and 

outcomes (Schafer & Graham, 2002) with the package mice 2.30 (van Buuren & Groothuis-

Oudshoorn, 2011) in R 3.4.3. The incorporation of both confounders and outcomes as predictors 

should result in unbiased and efficient estimates under the missing at random assumption (MAR, 

e.g., Moodie, Delaney, Lefebvre, & Platt, 2008). We estimated ten imputed datasets, and combined 

the results as described by Rubin's (1987) rules. The average relative efficiency attained for the 

outcomes at T4 (when missingness was highest) was 98.28% on average for the MSMMs and 97.97% 

on average for the SNMMs.  

There were also students who did not have a track allocation history as described in the ‘Treatment 

variable’ section, but at some time point went to a sports program, arts program, special method 

program, special education, changed track multiple times or changed to a track not part of the 

comparison. Simply removing these students from the analysis could bias results. Therefore, these 

students were included in the analysis up until the time point they went to an alternative track 

allocation history. From that time point onwards they were considered censored. Censoring weights 

for these students were estimated just as inverse probability treatment weights for the MSMM, but 

now the probability of being censored was estimated. The final weights used in the analysis were a 

product of the IPTW weights and censoring weights. For the SNMM it was not possible to use this 

approach. Therefore, students who did not have a track allocation history as described in the 

‘Treatment variable’ section were removed from the dataset when applying the SNMM. 
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3.3 Results 

3.3.1 Balance after weighting 

Figure 9 shows the overlap between the track allocation histories of each pairwise track comparison. 

Substantial overlap existed, but for each comparison very low propensity scores and very high 

propensity scores occurred. Accordingly, by applying the cutoff values of .05 and .95, students were 

removed from the dataset. The resulting sample sizes for all comparisons for each time point are 

shown in Table 5.  

Figure 9. Density plots logit propensities of lower track allocation. 

 

The minimum, maximum and mean SMDs after applying the MSMM weights are shown in Table 7. 

Figures 10, 11 and 12 show the SMDs for each covariate, before and after weighting. In general, 

satisfactory balance is achieved. However, we do note that for the time-varying measure of the 

general academic self-concept, while the bias is severely reduced, the cutoff is not always reached. 

At T4 there is some imbalance remaining for the modern and technical track comparison, and the 

technical and vocational track comparison. Generally, though, balance across the confounders is 

reached. 
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Figure 10. Classical and modern track comparison: SMDs before and after weighting for 

covariate(s) (histories) at T1, T2, T3 and T4. 
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Figure 11. Modern and technical track comparison: SMDs before and after weighting for 

covariate(s) (histories) at T1, T2, T3 and T4. 
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Figure 12. Technical and vocational track comparison: SMDs before and after weighting for 

covariate(s) (histories) at T1, T2, T3 and T4. 
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Table 7 

SMDs after weighting 

 Classical and modern 

track comparison 

Modern and technical 

track comparison 

Technical and vocational 

track comparison 

 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 

Average -.03 -.03 -.03 -.03 -.02 -.06 -.05 -.04 .03 -.06 -.06 -.04 

Minimum -.17 -.30 -.30 -.27 -.15 -.32 -.30 -.32 -.25 -.41 -.35 -.32 

Maximum .09 .18 .18 .19 .11 .18 .19 .20 .18 .12 .10 .26 

 

3.3.2 Analysis of track effects 

In what follows, we will discuss the results for each of the five dependent variables. And for each 

dependent variable, we describe the results for the three track comparisons. Every track comparison 

is made with the two methods: the MSMM and the SNMM.  

3.3.2.1 Academic performance in mathematics 

For academic performance in mathematics, the growth estimated with the MSMM for each of the 

three track comparisons is shown in Figure 13. Table 8 shows the MSMM ATE estimates and SNMM 

ATT estimates. For brevity, we only discuss the results at T4. 

For the classical and modern track comparison, students who are continuously in the higher track 

make significantly more learning gains compared to students who are continuously in the lower 

track, with a small effect size. Furthermore, students who are continuously in the higher track 

generally make significantly more learning gains compared to students who changed from the higher 

to lower track, with small to nonmeaningful effect sizes. However, at no point do the students who 

change from the higher to lower track make significantly less learning gains compared to students 

who are continuously in the lower track. 

For the modern and technical track comparison, students who are continuously in the higher track 

make significantly more learning gains compared to students who are continuously in the lower 

track, with a small effect size. Furthermore, students who are continuously in the higher track make 

significantly more learning gains compared to students who changed from the higher to lower track, 

with small to medium effect sizes. However, at no point do the students who change from the higher 

to lower track make significantly less learning gains compared to students who are continuously in 

the lower track. 

For the technical and vocational track comparison, students who are continuously in the higher track 

make significantly more learning gains compared to students who are continuously in the lower 

track, with a medium effect size. Furthermore, students who are continuously in the higher track 

generally make significantly more learning gains compared to students who changed from the higher 

to lower track, with small to medium effect sizes. Students who change from the higher to lower 

track make significantly more learning gains compared to students who are continuously in the lower 

track. 
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Table 8 

Contrast estimates academic performance in mathematics across track comparisons using the MSMMs 

and SNMMs. 

 Classical & modern 

track comparison 

Modern & technical 

track comparison 

Technical & vocational 

track comparison 

 MSMM SNMM MSMM SNMM MSMM SNMM 

 d (SE) d (SE) d (SE) d (SE) d (SE) d (SE) 

T1       

High – low 1.67* 
(0.31) 

1.74* 
(0.31) 

1.47* 
(0.36) 

1.59* 
(0.38) 

4.57* 
(0.77) 

4.60* 
(0.63) 

T2       

High – low 1.49* 
(0.41) 

0.65 
(0.41) 

4.01* 
(0.39) 

3.61* 
(0.44) 

1.11 
(0.70) 

2.11* 
(0.69) 

High – T1 Change 0.37 
(0.64) 

0.03 
(0.59) 

3.25* 
(0.75) 

3.66* 
(0.74) 

0.88 
(1.36) 

-2.76* 
(0.86) 

T3       

High – low 2.01* 
(0.38) 

1.60* 
(0.36) 

1.81* 
(0.39) 

1.45* 
(0.41) 

6.14* 
(0.70) 

6.63* 
(0.62) 

High – T1 Change 2.89* 
(0.55) 

1.93* 
(0.57) 

4.00* 
(0.66) 

3.01* 
(0.66) 

2.78* 
(0.81) 

1.65* 
(0.82) 

High – T2 Change 0.92 
(0.53) 

0.82 
(0.42) 

1.98* 
(0.55) 

1.03* 
(0.51) 

1.60 
(1.59) 

1.30 
(0.99) 

T4       

High – low 3.24* 
(0.46) 

2.96* 
(0.40) 

3.54* 
(0.50) 

2.92* 
(0.51) 

6.60* 
(1.14) 

7.44* 
(0.95) 

High – T1 Change 2.38* 
(0.60) 

1.58* 
(0.59) 

5.29* 
(0.76) 

4.47* 
(0.72) 

3.24* 
(1.29) 

1.83 
(1.02) 

High – T2 Change 2.02* 
(0.58) 

1.54* 
(0.48) 

3.62* 
(0.64) 

2.04* 
(0.64) 

5.13* 
(1.31) 

2.53* 
(1.18) 

High – T3 Change 0.85 
(1.16) 

2.13* 
(0.72) 

3.44* 
(0.87) 

3.14* 
(0.73) 

5.42* 
(2.18) 

3.53* 
(1.43) 

Note: d = contrast estimate; high = continuously in the higher track; low = continuously in the lower 

track; T1 change = changed from higher to lower track after T1; T2 change = changed from higher to 

lower track after T2; T3 change = changed from higher to lower track after T3 
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Figure 13. Mathematics performance estimated with MSMMs for each track allocation history 

of each track comparison. 

 

3.3.2.2 Academic performance in Dutch reading comprehension 

Table 9 shows the MSMM ATE estimates and SNMM ATT estimates for Dutch reading comprehension 

for each of the three track comparisons. Note that, because Dutch reading comprehension was only 

measured at T0 and T4, no visual representation of growth across school years is given. 

For the classical and modern track comparison, students who are continuously in the higher track 

make significantly more learning gains compared to students who are continuously in the lower 

track, with a small effect size. Furthermore, students who are continuously in the higher track 

generally make significantly more learning gains compared to students who changed from the higher 

to lower track, with small to medium effect sizes. However, at no point do the students who change 

from the higher to lower track make significantly less learning gains compared to students who are 

continuously in the lower track. 

For the modern and technical track comparison, students who are continuously in the higher track 

make significantly more learning gains compared to students who are continuously in the lower 

track, with a small effect size. Furthermore, students who are continuously in the higher track 

generally make significantly more learning gains compared to students who changed from the higher 

to lower track, with small to nonmeaningful effect sizes. However, at no point do the students who 

change from the higher to lower track make significantly less learning gains compared to students 

who are continuously in the lower track. 

For the technical and vocational track comparison, there is no difference in the learning gains 

between students who are continuously in the higher track and students who are continuously in the 

lower track. Furthermore, the students who changed from the higher to lower track have no 

differences in learning gains as well. 
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Table 9 

Contrast estimates academic performance in Dutch reading comprehension across track comparisons 

using the MSMMs and SNMMs. 

 Classical & modern 

track comparison 

Modern & technical 

track comparison 

Technical & vocational 

track comparison 

 MSMM SNMM MSMM SNMM MSMM SNMM 

 d (SE) d (SE) d (SE) d (SE) d (SE) d (SE) 

T4       

High – low 2.87* 

(0.56) 

3.13* 

(0.51) 

2.42* 

(0.57) 

2.60* 

(0.60) 

1.51 

(1.66) 

1.10 

(1.05) 

High – T1 Change 4.12* 

(0.77) 

3.70* 

(0.80) 

2.09* 

(0.87) 

2.97* 

(1.01) 

-1.16 

(1.54) 

-0.38 

(1.33) 

High – T2 Change 3.02* 

(0.72) 

2.99* 

(0.68) 

2.55* 

(0.75) 

2.41* 

(0.81) 

0.62 

(1.74) 

0.92 

(1.41) 

High – T3 Change 2.52 

(1.43) 

2.04 

(1.12) 

1.61 

(1.08) 

1.39 

(0.91) 

0.59 

(2.45) 

0.67 

(1.88) 

Note: d = contrast estimate; high = continuously in the higher track; low = continuously in the lower 

track; T1 change = changed from higher to lower track after T1; T2 change = changed from higher to 

lower track after T2; T3 change = changed from higher to lower track after T3 

 

3.3.2.3 General academic self-concept 

For general academic self-concept, the development estimated with the MSMM for each of the three 

track comparisons is shown in Figure 14. Table 10 shows the MSMM ATE estimates and SNMM ATT 

estimates. For brevity, we only discuss the results at T4. 

For the classical and modern track comparison, students who are continuously in the higher track 

develop a significantly higher self-concept compared to students who are continuously in the lower 

track. The MSMM ATE has a small effect size, whereas the SNMM ATT has a nonmeaningful effect 

size. Furthermore, the MSMM shows that students who are continuously in the higher track 

generally develop a significantly higher self-concept compared to students who changed from the 

higher to lower track, with generally small effect sizes. However, the SNMM ATTs have 

nonmeaningful effect sizes. The students who change from the higher to lower track do not differ in 

development from the students who are continuously in the lower track. 

For the modern and technical track comparison, students who are continuously in the higher track 

develop a significantly lower self-concept compared to students who are continuously in the lower 

track, with a small effect size. Furthermore, students who are continuously in the higher track 

generally develop a significantly lower self-concept compared to students who changed from the 

higher to lower track, with small to nonmeaningful effect sizes. The students who change from the 

higher to lower track do not differ in development from the students who are continuously in the 

lower track. 

For the technical and vocational track comparison, students who are continuously in the higher track 

develop a significantly lower self-concept compared to students who are continuously in the lower 

track, with a small to medium effect size. Furthermore, students who are continuously in the higher 

track generally develop a significantly lower self-concept compared to students who changed from 

the higher to lower track, with medium to large effect sizes. Students who change from the higher to 
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lower track generally develop a higher self-concept compared to students who are continuously in 

the lower track.Table 10 

Contrast estimates general academic self-concept across track comparisons using the MSMMs and 

SNMMs. 

 Classical & modern 

track comparison 

Modern & technical 

track comparison 

Technical & vocational 

track comparison 

 MSMM SNMM MSMM SNMM MSMM SNMM 

 d (SE) d (SE) d (SE) d (SE) d (SE) d (SE) 

T1       

High – low -0.12* 

(0.04) 

-0.12* 

(0.04) 

-0.19* 

(0.04) 

-0.21* 

(0.05) 

-0.80* 

(0.08) 

-0.79* 

(0.09) 

T2       

High – low 0.06 

(0.04) 

-0.03 

(0.04) 

-0.13* 

(0.05) 

-0.23* 

(0.05) 

-0.55* 

(0.09) 

-0.61* 

(0.09) 

High – T1 Change 0.06 

(0.07) 

-0.11 

(0.06) 

-0.01 

(0.07) 

-0.20* 

(0.08) 

-0.60* 

(0.21) 

-1.06* 

(0.12) 

T3       

High – low 0.22* 

(0.06) 

0.03 

(0.05) 

-0.33* 

(0.06) 

-0.40* 

(0.06) 

-0.50* 

(0.10) 

-0.55* 

(0.10) 

High – T1 Change 0.37* 

(0.09) 

-0.03 

(0.08) 

-0.22* 

(0.09) 

-0.35* 

(0.08) 

-0.67* 

(0.12) 

-0.87* 

(0.13) 

High – T2 Change 0.08 

(0.08) 

-0.04 

(0.06) 

-0.19* 

(0.08) 

-0.37* 

(0.08) 

-1.00* 

(0.19) 

-1.13* 

(0.15) 

T4       

High – low 0.26* 

(0.05) 

0.15* 

(0.05) 

-0.29* 

(0.06) 

-0.32* 

(0.06) 

-0.48* 

(0.11) 

-0.55* 

(0.10) 

High – T1 Change 0.31* 

(0.08) 

0.15* 

(0.08) 

-0.23* 

(0.09) 

-0.22* 

(0.09) 

-0.83* 

(0.13) 

-0.95* 

(0.10) 

High – T2 Change 0.25* 

(0.07) 

0.06 

(0.06) 

-0.03 

(0.07) 

-0.19* 

(0.08) 

-0.69* 

(0.15) 

-0.89* 

(0.14) 

High – T3 Change 0.18 

(0.14) 

0.05 

(0.11) 

-0.19* 

(0.09) 

-0.37* 

(0.09) 

-1.05* 

(0.22) 

-1.08* 

(0.15) 

Note: d = contrast estimate; high = continuously in the higher track; low = continuously in the lower 

track; T1 change = changed from higher to lower track after T1; T2 change = changed from higher to 

lower track after T2; T3 change = changed from higher to lower track after T3 



 

45 

 

 

Figure 14. Development general academic self-concept estimated with MSMMs for each track 

allocation history of each track comparison. 

3.3.2.4 Self-concept in mathematics 

For self-concept in mathematics, the development estimated with the MSMM for each of the three 

track comparisons is shown in Figure 15. Table 11 shows the MSMM ATE estimates and SNMM ATT 

estimates. For brevity, we only discuss the results at T4. 

For the classical and modern track comparison, students who are continuously in the higher track 

and students who are continuously in the lower track do not develop differently for self-concept in 

mathematics. Furthermore, the MSMMs show that students who are continuously in the higher track 

develop a significantly higher self-concept in mathematics compared to students who changed from 

the higher to lower track. However, the effects sizes are nonmeaningful. The SNMM shows no 

significant difference between students who are continuously in the higher track and students who 

changed from the higher to lower track. The effect sizes are also nonmeaningful. 

For the modern and technical track comparison, students who are continuously in the higher track 

develop a significantly lower self-concept in mathematics compared to students who are 

continuously in the lower track, with a small effect size. For students who changed from the higher to 

lower track, the MSMM and SNMM mostly agree. Students who changed from the higher to lower 

track after T1 do not differ significantly in self-concept in mathematics from the students who are 

continuously in the higher track. Students who changed from the higher to lower track after T3 

develop a significantly higher self-concept in mathematics compared to students who are 

continuously in the higher track, with a medium to large effect size. However, for students who 

changed from the higher to lower track after T2 the SNMM predict a significantly higher academic 

self-concept in mathematics with a small effect size, whereas the MSMM predicts a nonmeaningful 

effect size. 

For the technical and vocational track comparison, students who are continuously in the higher track 

develop a significantly lower self-concept compared to students who are continuously in the lower 

track, with a small effect size. Students who are continuously in the higher track generally develop a 

significantly lower self-concept compared to students who change from the higher to lower track. 
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Generally, students who change from the higher to lower track develop a significantly lower self-

concept compared students who are continuously in the lower track. 

Table 11 

Contrast estimates self-concept in mathematics across track comparisons using the MSMMs and 

SNMMs. 

 Classical & modern 

track comparison 

Modern & technical 

track comparison 

Technical & vocational 

track comparison 

 MSMM SNMM MSMM SNMM MSMM SNMM 

 d (SE) d (SE) d (SE) d (SE) d (SE) d (SE) 

T1       

High – low -0.03 

(0.04) 

-0.05 

(0.04) 

-0.06 

(0.04) 

-0.09* 

(0.04) 

-0.83* 

(0.07) 

-0.86* 

(0.08) 

T2       

High – low 0.04 

(0.04) 

-0.10* 

(0.04) 

-0.12* 

(0.05) 

-0.23* 

(0.05) 

-0.64* 

(0.08) 

-0.80* 

(0.09) 

High – T1 Change 0.06 

(0.07) 

-0.08 

(0.06) 

-0.03 

(0.07) 

-0.18* 

(0.07) 

-0.79* 

(0.15) 

-1.22* 

(0.11) 

T3       

High – low 0.11* 

(0.05) 

-0.05 

(0.05) 

-0.28* 

(0.06) 

-0.38* 

(0.05) 

-0.43* 

(0.10) 

-0.53* 

(0.10) 

High – T1 Change 0.35* 

(0.08) 

0.03 

(0.07) 

-0.18 

(0.09) 

-0.28* 

(0.09) 

-0.92* 

(0.10) 

-1.00* 

(0.11) 

High – T2 Change 0.07 

(0.07) 

-0.03 

(0.05) 

-0.23* 

(0.07) 

-0.42* 

(0.07) 

-0.73* 

(0.17) 

-0.76* 

(0.12) 

T4       

High – low 0.08 

(0.06) 

-0.01 

(0.05) 

-0.32* 

(0.06) 

-0.39* 

(0.05) 

-0.20* 

(0.10) 

-0.32* 

(0.10) 

High – T1 Change 0.19* 

(0.08) 

0.02 

(0.08) 

-0.11 

(0.08) 

-0.15 

(0.08) 

-0.73* 

(0.10) 

-0.84* 

(0.11) 

High – T2 Change 0.17* 

(0.07) 

-0.02 

(0.07) 

-0.12 

(0.07) 

-0.33* 

(0.07) 

-0.17 

(0.12) 

-0.46* 

(0.10) 

High – T3 Change 0.07 

(0.14) 

-0.06 

(0.10) 

-0.63* 

(0.08) 

-0.85* 

(0.08) 

-0.21 

(0.19) 

-0.31* 

(0.13) 

Note: d = contrast estimate; high = continuously in the higher track; low = continuously in the lower 

track; T1 change = changed from higher to lower track after T1; T2 change = changed from higher to 

lower track after T2; T3 change = changed from higher to lower track after T3 
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Figure 15. Development self-concept in mathematics estimated with MSMMs for each track 

allocation history of each track comparison. 

3.3.2.5 Self-concept in Dutch 

For self-concept in Dutch, the development estimated with the MSMM for each of the three track 

comparisons is shown in Figure 16. Table 12 shows the MSMM ATE estimates and SNMM ATT 

estimates. For brevity, we only discuss the results at T4. 

For the classical and modern track comparison, students who are continuously in the higher track 

develop a significantly higher self-concept in Dutch compared to students who are continuously in 

the lower track, with a small effect size. Furthermore, students who changed from the higher to 

lower track generally do not develop significantly different from the other groups of students. The 

effects sizes are also nonmeaningful.  

For the modern and technical track comparison, students who are continuously in the higher track 

develop a significantly lower self-concept in Dutch compared to students who are continuously in the 

lower track. However, the effect size is nonmeaningful. Generally, students who changed from the 

higher to lower track develop a significantly higher self-concept than students who are continuously 

in the higher track. The effect sizes are small to nonmeaningful. 

For the technical and vocational track comparison, students who are continuously in the higher track 

do not differ from students who are continuously in the lower track. Students who change from the 

higher to lower track after T2 and T3 do not develop differently compared to students who are 

continuously in the higher or lower track. However, students who change from the higher to lower 

track after T1 do develop a significantly higher self-concept in Dutch than students who are 

continuously in the higher track or lower track. 
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Table 12 

Contrast estimates self-concept in Dutch across track comparisons using the MSMMs and SNMMs. 

 Classical & modern 

track comparison 

Modern & technical 

track comparison 

Technical & vocational 

track comparison 

 MSMM SNMM MSMM SNMM MSMM SNMM 

 d (SE) d (SE) d (SE) d (SE) d (SE) d (SE) 

T1       

High – low 0.09* 

(0.04) 

0.08* 

(0.04) 

-0.03 

(0.04) 

-0.06 

(0.05) 

-0.39* 

(0.08) 

-0.35* 

(0.07) 

T2       

High – low 0.16* 

(0.04) 

0.20* 

(0.04) 

0.15* 

(0.05) 

0.13* 

(0.05) 

-0.37* 

(0.08) 

-0.37* 

(0.08) 

High – T1 Change 0.05 

(0.06) 

0.06 

(0.06) 

0.23* 

(0.08) 

0.21* 

(0.07) 

-0.37* 

(0.11) 

-0.54* 

(0.10) 

T3       

High – low 0.31* 

(0.05) 

0.27* 

(0.05) 

-0.15* 

(0.05) 

-0.13* 

(0.05) 

-0.18* 

(0.09) 

-0.14 

(0.08) 

High – T1 Change 0.22* 

(0.07) 

0.13* 

(0.07) 

-0.23* 

(0.08) 

-0.26* 

(0.08) 

-0.37* 

(0.11) 

-0.36* 

(0.10) 

High – T2 Change 0.07 

(0.06) 

0.04 

(0.05) 

-0.21* 

(0.06) 

-0.22* 

(0.06) 

-0.28 

(0.19) 

-0.27* 

(0.12) 

T4       

High – low 0.31* 

(0.05) 

0.29* 

(0.04) 

-0.19* 

(0.06) 

-0.14* 

(0.05) 

-0.01 

(0.09) 

0.04 

(0.11) 

High – T1 Change 0.10 

(0.07) 

0.11 

(0.06) 

-0.26* 

(0.08) 

-0.21* 

(0.08) 

-0.30* 

(0.11) 

-0.28* 

(0.11) 

High – T2 Change 0.16* 

(0.06) 

0.11* 

(0.05) 

-0.23* 

(0.06) 

-0.23* 

(0.06) 

0.05 

(0.13) 

0.04 

(0.12) 

High – T3 Change -0.06 

(0.13) 

0.01 

(0.10) 

-0.18 

(0.09) 

-0.14 

(0.07) 

-0.11 

(0.18) 

-0.13 

(0.14) 

Note: d = contrast estimate; high = continuously in the higher track; low = continuously in the lower 

track; T1 change = changed from higher to lower track after T1; T2 change = changed from higher to 

lower track after T2; T3 change = changed from higher to lower track after T3 

 

Figure 16. Development self-concept in Dutch estimated with MSMMs for each track 

allocation history of each track comparison. 
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3.4 Discussion empirical study 
Our results supported the first hypothesis that being in a higher track is beneficial for academic 

performance relative to being continuously in a lower track. The hypothesis held true for each 

comparison and for both academic performance in mathematics and academic performance in Dutch 

reading comprehension. The one exception was that students continuously in the technical track and 

comparable students continuously in the vocational track did not differ for learning progress in Dutch 

reading comprehension. 

Our results generally supported the second hypothesis that being in a higher track negatively affects 

academic self-concept, relative to being in a lower track. However, this only held true for the modern 

track and technical track comparison, and the technical track and vocational track comparison. For 

the classical and modern track comparison, the reverse was found, for being in the classical track was 

beneficial for academic self-concept. Also note that sometimes no significant differences were found. 

Hence, it remains arguable how strongly our results support the second hypothesis. 

Our results somewhat supported the third hypothesis that downward track change negatively affects 

academic performance. Generally, we found that changing from the higher to lower track makes 

those students perform equal to the students who were continuously in the lower track. Hence, the 

relative gains made in the higher track disappeared. However, we found no support for the notion 

that students are better of starting in lower track instead of changing from the higher to lower track 

over time. 

Our results did not support the fourth hypothesis that downward track change negatively affects 

academic self-concept. Our findings rather showed that the opposite is true. For both the modern 

and technical track comparison, and the technical and vocational track comparison we found that 

changing from the higher to lower track benefits academic self-concept. However, for the classical 

and modern track comparison, there were some indications that downward track change negatively 

affected academic self-concepts, though the effects were unstable across the MSMM and SNMM. 

In this empirical study the MSMM and SNMM yielded results which led to equal conclusions on the 

effects of tracks. There were some differences, though this was to be expected given that the MSMM 

estimates ATEs and the SNMM estimates ATTs. Furthermore, both methods also dealt differently 

with students who went to an alternative track allocation history. The only notable difference 

between the MSMM estimates and SNMM estimates was the comparison between the classical and 

modern track on general academic self-concept. The MSMM estimates indicated that being in the 

classical track had a small positive effect, whereas the SNMM indicated that that no such effect 

existed. When interpreting the results of that comparison, we based ourselves on the MSMM 

estimates, for the MSMMs handle the students who have an alternative track allocation history more 

correctly than the SNMMs. Except that comparison, the estimates of the MSMM and SNMM were 

comparable in this empirical study. 

4 Discussion 
This study started from the observation that appropriate methods are required to estimate average 

effects of time-varying treatments that are subject to time-varying confounders. The potential 

outcomes framework describes two main assumptions that, if true, allow for the unbiased estimation 
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of these average effects. The first, the sequential conditional exchangeability assumption, requires 

that the average effect cannot be ascribed to pretreatment differences between treatment 

conditions. The second, the positivity assumption, requires that overlapping strata of confounder and 

treatment histories exist between treatment conditions. The g-formula is an estimator that satisfies 

the sequential conditional exchangeability assumption by weighting, which removes all pretreatment 

differences between treatment conditions. However, the weights are estimated by stratifying across 

all observed combinations of confounder and treatment histories. This stratification is unrealistic in 

most empirical datasets and consequently the positivity assumption will not be true. The MSMM and 

SNMM, while both based on the g-formula, satisfy the assumptions in a manner better suited to 

empirical datasets. Hence, in this study, we compared the theories of both models and what they 

offer for practical application. 

To prevent the problem of too many strata when using the g-formula, the MSMM and SNMM instead 

model treatment probabilities. For if the probability estimation is based on confounder and 

treatment histories, then the pretreatment differences in confounder and treatment histories will be 

reflected in unequal treatment probabilities. Consequently, an estimator that accounts for these 

unequal treatment probabilities will also account for pretreatment differences between treatment 

conditions. This will satisfy the sequential conditional exchangeability assumption. Furthermore, if an 

overlap exists in treatment probabilities across treatment conditions, the positivity assumption will 

also be satisfied. Therefore, the MSMM uses the inverse of predicted probabilities as weights to 

achieve balance in confounder and treatment histories between treatment conditions (i.e., IPTW). 

The SNMM directly uses the prediction of treatment probabilities to estimate average treatment 

effects (i.e., g-estimation). However, there are challenges in using treatment probabilities for 

estimating average effects of treatment histories, and MSMMs and SNMMs handle these differently. 

The main challenge when using MSMMs is that confounder balance is achieved on average across 

infinite samples, but single sample imbalance will still exist by chance (e.g., Imai, King, & Stuart, 

2008). This is because IPTW makes a dataset approximate a simple random sample (e.g., Rubin, 2007, 

pp. 25-27), which is unbiased but relatively inefficient compared to other sampling methods (e.g., 

Kish, 1965). If the effective sample size after IPTW is relatively large, then this inefficiency is of less 

concern. However, when the effective sample size after IPTW is relatively small, often because of 

large variability in weights, inefficiency will be a problem (e.g., Golinelli, Ridgeway, Rhoades, Tucker, 

& Wenzel, 2012). Truncation and removing respondents with extreme propensities will improve 

efficiency by preventing large weights, but they will also cause bias (e.g., Crump et al., 2009; Lee et 

al., 2011). Including the baseline measures in the structural model will also improve efficiency, but it 

will not directly reduce imbalance in later measures of time-varying confounders (e.g., Robins et al., 

2000). Overall, strategies to reduce random imbalance after IPTW often induce bias, and researchers 

will have to try several strategies to prevent either from being too large. 

While the SNMM also uses treatment probabilities to satisfy the sequential conditional 

exchangeability assumption, it suffers less from limited efficiency as the MSMM. The SNMM achieves 

this efficiency by basing the average effect estimate mainly on where the overlap in treatment 

probabilities is greatest (Vansteelandt et al., 2014, pp. 716-718). This prevents respondents with 

extreme treatment probabilities to cause uncertainty in the average effect estimate. Consequently, a 

higher efficiency is achieved. The resulting average effect estimate is of course under the assumption 
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that the average effect is constant, even across respondents with extreme probability values who 

were barely involved in the estimation. Researchers will need to decide whether the constant 

treatment effect assumption is tenable for their study. 

Note though that when the area of common support is limited, causal inference by applying a 

MSMM is only possible after removing respondents with extreme propensity scores. For the SNMM 

the causal inference will automatically only apply to the limited area of common support. The 

average effect estimates are then limited to only a small part of the population. However, how to 

interpret this estimate is debatable. Accordingly, Rosenbaum (2010, p. 86) argues that in this case it 

is preferable to redefine the population of interest based on observed covariates to simply prevent 

extreme probabilities from occurring. 

Another challenge is specifying the prediction models for estimating the treatment probabilities. 

Typically, logistic regression models with covariates as linear and purely additive predictors are used. 

However, it is implausible that covariates always have noninteracting and nonlinear relationships 

with treatment probabilities (McCaffrey et al., 2004). Generalized boosted regression model (GBMs) 

use a data-adaptive algorithm that iteratively processes multiple regression trees for capturing all 

interacting and nonlinear relationships between the covariates and treatment probabilities. Using 

GBMs is considered best practice for MSMs (e.g., Stuart, 2010). Nevertheless, while GBMs give 

unbiased probability estimates, they will not minimize random sample imbalance. Different methods 

can minimize random sample imbalance, such as covariate balancing propensity scores (CBPS, Imai & 

Ratkovic, 2015). In a recent overview Griffin, McCaffrey, Almirall, Burgette, and Setodji (2017) 

compared different procedures for estimating treatment probabilities, showing that a method either 

minimizes random sample imbalance or is unbiased across samples. Researchers will again have to 

choose between reducing variance in sample estimates (i.e., efficiency) and reducing bias when 

specifying the prediction models for treatment probabilities. Furthermore, these methods are only 

available for MSMMs, not for SNMMs. 

Related to specifying the prediction models is the question of which covariates to include in the 

prediction models. The consensus is that variables that predict both the treatment and the outcome 

(i.e., confounders) should be included. If sample size allows it, variables related to the outcome 

should also be included. However, variables that only predict the treatment should not be included, 

for they only increase the variance of the estimates (e.g., Brookhart et al., 2006; Myers et al., 2011; 

Stuart, 2010). GBMs will automate the process of variable inclusion in the model for estimating 

treatment probabilities (McCaffrey et al., 2004). Note that all sources of confounding should have 

been gathered during data collection before variable selection. This requires background knowledge 

about the phenomena under investigation. Of interest is that Steiner et al. (2010) showed that 

measuring all plausible confounders is not required, whereas McCaffrey, Lockwood and Setodji 

(2013) showed that unreliability in the covariates is not necessarily problematic. This is due to other 

variables correcting for the unmeasured and unreliably measured confounders. This facilitates bias 

reduction, but also makes the process of bias reduction somewhat opaque. Overall, researchers will 

still have to decide which variables to collect and what they consider predictive. 

Lastly, choosing between the MSMM and the SNMM also means choosing between the ATE and the 

ATT of a treatment history. This choice depends on the estimand of interest; the average effect of a 

treatment history as if the whole population is in that treatment history, or the average effect of the 
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treatment history for those who are in that treatment history. However, if only the weak sequential 

conditional exchangeability is tenable (Greenland & Robins, 2009, p. 4), then only the ATT is unbiased 

and the SNMM should be used. 

5 Limitations  
We introduced the g-formula as a theoretical computation formula for estimating average effects of 

time-varying treatments, but also described it as difficult to use in practice (e.g., Vansteelandt et al., 

2014, p. 729). However, some authors have used the g-formula in their research. In these studies, the 

conditional exchangeability was considered tenable by either stratifying on relatively few variables 

and making parametric assumptions on specific confounders (e.g., Austin & Urbach, 2013; Snowden 

et al., 2011). Nonetheless, because time-varying confounding in psychological research is often 

characterized by many covariates, we considered its application less relevant. Hence, we limited this 

study to the application MSMMs and SNMMs.  

We also refrained from discussing effect modification, which is the interaction effect between a 

confounder and treatment (Robins et al., 2000, pp. 556-557). In practice, we note that most studies 

are limited to average effect estimates. This is technically unproblematic for the MSMM, because the 

average effect estimate is averaged across all confounder levels. Accordingly, an interaction between 

confounder and treatment would not bias the average effect estimate. However, for the SNMM, 

such an interaction can cause bias, for the average effect estimate is based on where the area of 

common support is greatest (Vansteelandt et al., 2014, pp. 717-718). This area may be situated 

around a specific confounder value, and if an interaction exists with this confounder, the constant 

treatment effect assumption is untrue. Accordingly, an effect modification needs to be included in 

the SNMM to satisfy this assumption and give unbiased average effect estimates. Of note is that the 

MSMM can only include effect modification for baseline confounders, whereas the SNMM can also 

include effect modification for time-varying confounders (Robins et al., 2000, pp. 556-557; 

Vansteelandt et al., 2014, pp. 717-718). 

6 Conclusion 
The goal of this study was to compare the marginal structural mean model and the structural nested 

mean model for estimating average effects of time-varying treatments. At first glance, both models 

are similar, for both are estimators of average treatment effects and are situated in the same 

theoretical framework. However, the models estimate average treatment effects for different 

populations and differ in their assumptions. It was also shown how these differences have 

repercussions for the efficiency and the bias of the estimates. Accordingly, we used both models in a 

simulation study and an empirical study, showing how they can be applied in practice. Moreover, 

both models were situated in the potential outcomes framework, a theoretical framework that can 

help to understand the challenges of causal inference. We hope that, when combined with the 

information in the appendices, other researchers can also apply the models introduced in this article.  
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7 Appendix A: Collider stratification bias 
Collider stratification bias will occur in any configuration of three variables where two independent 

variables, called the colliding variables, predict a third variable, called the collider (Cole et al., 2009; 

Whitcomb, Schisterman, Perkins, & Platt, 2009). In such a configuration, the two colliding variables 

will have a relation after conditioning on the collider. It may be counterintuitive why conditioning on 

a collider will result in a conditional relationship between colliding variables that is different from 

their marginal relationship. To clarify the source of this bias, we give a conceptual and statistical 

illustration. Afterwards, we provide a brief framework wherein this bias can be interpreted. 

For the conceptual illustration (inspiration taken from Cole et al., 2009; Vandecandelaere et al., 

2016), we use the hypothetical situation where students are assigned to an arts course based on 

their mathematical ability and painting ability. We imagine that both abilities are marginally 

independent and that both abilities predict the arts course assignment. Accordingly, the abilities are 

colliding variables whereas the assignment to the arts course is a collider. Subsequently, we assess 

the relation between mathematical and painting ability of students who were assigned to the arts 

course. This result will show that, within the group of students who were assigned to the arts course, 

both abilities are no longer independent. For a student with poor drawing skills in the arts course 

must be mathematically proficient and vice versa. Hence, while no relation existed between the 

mathematical and painting abilities for all students, there is a relation between mathematical and 

painting abilities within the group of students allocated to the arts course. 

For the statistical illustration we generated two independent variables A and B (R syntax is shown at 

the end of this appendix). The scatterplot in Figure 1a accordingly shows that they do not have a 

tangible relationship. If these two variables predict a third variable C, then variables A and B will have 

tangible relationships within strata of C, as the scatterplot in Figure 1b shows. However, the strata 

averages of A and B will have a reverse relationship, as the scatterplot in Figure 1c shows. 

Partitioning the relationship between A and B according to strata of C is a simple way of conditioning 

the relation between A and B on C. Hence, a collider partitions the near zero marginal relationship of 

its colliding variables into two tangible conditional relationships, a relationship within collider strata 

and an opposing relationship between collider strata. The within and between relationships cancel 

each other out when summed. 

 

Figure 1. Comparing the marginal relation between two colliding variables A and B with 

their conditional relations within and between strata of collider C. 
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There are many examples in statistical literature of bias caused by confusing the conditional 

relationship between variables with their marginal relationship. The most well-known example is 

Simpsons Paradox, where a relationship exists between variables within groups, but reverses or 

disappears when combining the respondents of different groups into one dataset (Blyth, 1972). 

Another well-known example in medical research is Berkson’s Paradox, where a relationship 

between two variables within a specific subpopulation (i.e., hospital patients) does not exist in the 

general population (Snoep, Morabia, Hernández-Diaz, Hernán, & Vandenbroucke, 2014). 

Recently, different sources of bias have been connected to more general statistical concepts. For 

example, Pearl (2009) and Hernán et al. (2004) note that both confounding and collider stratification 

bias result in non-exchangeability between respondents across treatment groups. For both 

confounders and colliders, bias is removed by accounting for all paths originating from the colliding 

variables or confounders. This is achievable by either controlling for the colliding variables or 

confounder themselves or any variable that mediates the effects on the treatment exposure (Hernán 

et al., 2004; Pearl, 2009, pp. 16-18). This idea of having to block ‘paths’ has led to the statistical 

concept of ‘d-separation’ as a necessity for causal inference (Pearl 2009, pp. 16-18). However, 

despite recent advances in literature on causal literature to uncover different sources of bias (e.g., 

Porta, Vineis, & Bolúmar, 2015), discussion remains whether they are truly only nonmeaningful 

artifacts (e.g., Greenland, 2017, pp. 8-9; Krieger & Davey Smith, 2016) 

 

#R code Appendix A 

 

### Package preparation 

install.packages("dplyr") 

library(dplyr) #For ntile function, easily creates strata with equal 

respondent sizes 

 

### Data generation 

A<-rnorm(500,mean=0,sd=1) 

B<-rnorm(500,mean=0,sd=1) 

C<-0.7*A+0.5*B+rnorm(500,mean=0,sd=0.509901951) 

 

### Correlations variables 

cor(A,B) 

cor(A,C) 

cor(B,C) 

 

### Scatter plot A and B marginal 

plot(A,B) 

abline(lm(A~B),lwd=3) 

 

### Strata creation 

 

Cstrata<-ntile(C,5) 

mean(c( 

cor(A[Cstrata==1],B[Cstrata==1]), 

cor(A[Cstrata==2],B[Cstrata==2]), 

cor(A[Cstrata==3],B[Cstrata==3]), 

cor(A[Cstrata==4],B[Cstrata==4]), 

cor(A[Cstrata==5],B[Cstrata==5]) 
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)) 

 

mean(c( 

cov(A[Cstrata==1],B[Cstrata==1]), 

cov(A[Cstrata==2],B[Cstrata==2]), 

cov(A[Cstrata==3],B[Cstrata==3]), 

cov(A[Cstrata==4],B[Cstrata==4]), 

cov(A[Cstrata==5],B[Cstrata==5]) 

)) 

 

Amean<-aggregate(A,list(Cstrata),FUN=mean)[,2] 

Bmean<-aggregate(B,list(Cstrata),FUN=mean)[,2] 

 

### Scatter plots A and B conditional on C 

 

plot(A,B) 

 

abline(lm(B[Cstrata==1]~A[Cstrata==1]),lwd=3,col="red") 

abline(lm(B[Cstrata==2]~A[Cstrata==2]),lwd=3,col="blue") 

abline(lm(B[Cstrata==3]~A[Cstrata==3]),lwd=3,col="green4") 

abline(lm(B[Cstrata==4]~A[Cstrata==4]),lwd=3,col="purple") 

abline(lm(B[Cstrata==5]~A[Cstrata==5]),lwd=3,col="chocolate") 

 

plot(Amean,Bmean) 

abline(lm(Amean~Bmean),lwd=3) 

8 Appendix B: g-estimation 

8.1 An example of g-estimation for a time-fixed treatment 
To understand g-estimation it seems helpful to remind ourselves of the central ideas of causal 

inference. The central idea of causal inference starts from the fundamental problem of causal 

inference (Holland, 1986), which is that the individual treatment effect for the potential outcomes, Δi 

= Yi(1) – Yi(0), cannot be observed. For a person i we can only observe either the potential outcome 

of being in the active treatment condition Yi(1) or the potential outcome of being in the control 

condition Yi(0). We cannot observe both Yi(1) and Yi(0) for one respondent i. However, if the 

conditional exchangeability assumption is tenable, an average treatment effect can still be estimated 

(Rosenbaum and Rubin, 1983). This assumption means that the average potential outcome of either 

the active treatment condition or the control condition is equal across the different treatment 

conditions when conditioning on the confounders L. Put formally, the potential outcome of being in 

the control condition is equal for those in the treated condition and those in the control condition 

when conditioning on L, with E[Y(0)|Z = 1, L = l]= E[Y(0)|Z = 0, L = l]. The same holds true for Y(1). 

Hence, the fundamental problem of causal inference can be overcome if the conditional 

exchangeability assumption is tenable. 

The conditional exchangeability assumption can also be interpreted in a different manner, which 

relates more clearly to the idea of the g-estimation. For the conditional exchangeability assumption 

also means that the potential outcomes of both conditions are independent of treatment exposure, 

with Y(1),Y(0)⊥⊥Z|L. Colloquially, treatment exposure Z should not predict the potential outcomes 

Y(1) and Y(0) after conditioning on confounders L. Accordingly, the reverse is also true, and the 

potential outcomes Y(1) and Y(0) should not predict whether a respondent is allocated to the 

treatment or the control condition. Note that the observed outcome Y does not need to be 
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independent of the treatment exposure Z, for the research question is whether there is an average 

effect of the treatment exposure on the observed outcome. It is this understanding of the 

conditional exchangeability assumption that potential outcomes Y(1) and Y(0) should not predict Z, 

that is the starting point of g-estimation. 

We should note that in the context SNMMs it suffices that the potential outcomes of being in the 

control condition Y(0) are independent from treatment exposure Z for different confounder levels of 

L. This is the weak conditional exchangeability assumption, formally written as Y(0)⊥⊥Z|L. 

For illustrating g-estimation, we use the example data of Table 1 which has three respondents in the 

control condition (Zi=0) and three respondents in the active treatment condition (Zi=1). Accordingly, 

for the former respondents we know Yi|Zi=0, whereas for the latter respondents we know Yi|Zi=1. 

This is the same dataset as in Table 2 of the main text. However, the values of Yi are now mean 

centered for the potential outcome in the control condition. Naïvely, we may think that subtracting 

the averages of both ((𝑌𝑖|1̅̅ ̅̅ ̅) − 𝑌𝑖|0̅̅ ̅̅ ̅) = (3) − (−1)) yields the average treatment effect, 4. This is 

incorrect, for we note that confounder L is unequally distributed across the active treatment 

condition and control condition. The last three columns show the potential outcomes Yi(0), potential 

outcomes Yi(1) and individual treatment effects 𝜓i. The latter are always 2 and the average 

treatment effect is therefore also 2. This treatment effect is the ‘blip’. In practice, these potential 

outcomes and blip will never be observed, but we reveal these now for illustrative purposes. Note 

that Yi|Zi=0 is equal to Yi(0) and Yi|Zi=1 is equal to Yi(1) as they should be according to the consistency 

assumption. 

Table 1 

Example dataset g-estimation 

Respondent i Zi Yi|Zi=0 Yi|Zi=1 Li Yi(0) Yi(1) 𝜓i 

1 0 -3 ? 0 -3 -1 2 

2 0 -3 ? 0 -3 -1 2 

3 0 3 ? 1 3 5 2 

4 1 ? -1 0 -3 -1 2 

5 1 ? 5 1 3 5 2 

6 1 ? 5 1 3 5 2 

 

In Figure 1, a DAG shows the relationship between the variables of Table 1. Confounder Li predicts 

treatment exposure Zi and the outcome Yi, whereas Zi also has a direct effect on Yi (i.e., the average 

treatment effect of interest). Accordingly, the confounding effect of Li is why we need the control for 

the values Li if we want to estimate the treatment effect of Zi on the outcome Yi. 

 

Figure 1. DAG example confounder L, treatment Z and outcome Y. 
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8.2 Estimating the probability of treatment exposure 
In this section we show how the potential outcomes Yi(Zi=0) in the example of Table 1 and Figure 1 

do not contribute to the prediction of treatment exposures Zi when we condition on the confounder 

values of Li. Equation 1 shows the predictive model of Zi when we have Yi(0) and Li as predictors: 

𝑃(𝑍𝑖|𝑦𝑖(0), 𝑙𝑖) = 𝛼0 + 𝛼1𝑙𝑖 + 𝛼2𝑦𝑖(0)𝑖 (1) 

Equation 1 relates the probability of Zi to a parametric function of both Yi(0) and Li. In this case the 

link function is a logit function. If the conditional exchangeability assumption is true, Yi(0) should not 

predict Zi when we condition on Li. Therefore, 𝛼2 should be zero, but only if using the correct 

parameter values for 𝛼0 and 𝛼1, otherwise the conditional exchangeability assumption would be 

untrue. 

Luckily, we know both the true values Yi(0) and parameters 𝛼0and 𝛼1. We generated the probability 

of treatment assignment to be 1/3 when Li=0, accordingly 𝛼0=-0.693, for this is the logit of 

P(Zi|L=0)=1/3. Furthermore, we generated the probability of treatment assignment to be 2/3 when 

Li=1, accordingly 𝛼1=1.386, for 𝛼0+𝛼1= 0.693 is the logit of P(Zi|L=1)=2/3. In short, the true 

parameter values of 𝛼0 and 𝛼1 are -0.693 and 1.386 respectively, leaving us only with an unknown 

value for parameter 𝛼2. 

First, we try 𝛼2=0 in combination with the true parameter values 𝛼0=-0.693 and 𝛼1=1.386. If the 

conditional exchangeability assumption is true, 𝛼2=0 should yield unbiased predictions. Accordingly, 

Equation 1 now predicts that a respondent with Li=1 has a probability of 2/3 of being assigned to the 

active treatment condition, Zi=1. Furthermore, we predict that a respondent with Li=0 has a 

probability of 1/3 of being assigned to the active treatment condition, Zi=1. This prediction matches 

up exactly with the data in Table 1. 

We also try some alternative values for 𝛼2 in Equation 1, to find out whether potential outcomes 

Yi(0) cannot be made to help predict treatment exposure Zi. First, we keep the true parameter values 

𝛼0=-0.693 and 𝛼1=1.386 but make 𝛼2=0.5. Now the model predicts probability of treatment 

assignment to be 9/10 when Li=1 and 1/10 when Li=0. Obviously, this does not correspond with our 

data, and 𝛼2=0.5 is incorrect. As a second attempt, we kept the true parameter values 𝛼0=-0.693 and 

𝛼1=1.386 but make 𝛼2=-0.5. Now the model predicts probability of treatment assignment to be 

31/100 when Li=1 and 69/100 when Li=0. Again, this does not correspond with our data, and 𝛼2= -0.5 

seems incorrect. In conclusion, the potential outcomes of being in the control condition Yi(0) seem 

unable to improve our prediction after conditioning on confounder Li. 

However, it should be noted that if we do not condition on confounder Li, which makes the 

conditional exchangeability assumption untenable, then Yi(0) will contribute to the prediction of 

treatment exposure Zi. For example, if we set 𝛼0 and 𝛼1 to zero, effectively removing Li as predictor, 

the predictions of Equation 1 will still be correct if setting 𝛼2 equal to 0.231. Accordingly, whether 

the potential outcomes of being in the control condition Yi(0) do not contribute to the prediction of 

treatment exposures depends on the tenability of the conditional exchangeability assumption. 

In conclusion, this section shows how the potential outcomes Yi(0) do not contribute to the 

prediction of treatment exposures Zi when conditioning on the confounder values Li. This is due the 

potential outcomes Yi(0) being conditionally exchangeable on Zi after conditioning on Li. However, in 
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practice, the potential outcomes of the control condition are unknown for respondents in the active 

treatment condition and need to be estimated. We have learned though that under the conditional 

exchangeability assumption these unknown potential outcomes should not predict treatment 

exposure, after conditioning on the confounder. Hence, we can use that information to procure the 

unknown potential outcomes. 

8.3 Estimating the blip 
So far, we have assumed that we know the potential outcome 𝑌𝑖(0) for each respondent in our 

example of Table 1 and Figure 1. However, in practice we only know 𝑌𝑖(0) for those respondents 

with Yi|Zi=0; but not for respondents with Yi|Zi=1. For respondents with Yi|Zi=1, their potential 

outcome of being in the control condition 𝑌𝑖(0) is equal to their observed outcome Yi minus the blip 

𝜓. Hence Equation 1 can be rewritten as Equation 2. 

𝑃(𝑍𝑖|𝑦𝑖 − 𝑧𝑖𝜓, 𝑙𝑖) = 𝛼0 + 𝛼1𝑙𝑖 + 𝛼2(𝑦𝑖 − 𝑧𝑖𝜓) (2) 

Equation 2 shows that the challenge is in jointly finding a value for the blip 𝜓 and correctly modeling 

the treatment exposure probabilities based on confounder Li. We know from the former section that 

for unbiased estimates of (𝑦𝑖 − 𝑧𝑖𝜓) should make 𝛼2=0. This does require that we condition on Li to 

satisfy the conditional exchangeability assumption.  

So far, we have written the conditional exchangeability assumption as Yi(0)⊥⊥Zi|Li. This equation 

means that the potential outcomes Yi(0) are independent from the treatment exposures Zi after 

conditioning on Li. Another way to describe the independence between Yi(0) and Zi|Li is that their 

covariance is zero. Hence, cov(𝑌𝑖(0), Zi|Li)=0. We can use this as basis for deriving an estimating 

equation for 𝜓, in which we also replace 𝑌𝑖(0) 𝑏𝑦 Yi - Zi𝜓 in Equation 3: 

0 = 𝐶𝑜𝑣(𝑌𝑖 − 𝑍𝑖𝜓, 𝑍𝑖|𝐿𝑖) (3) 

The covariance from Equation 3 is equal to the expected value of the product of both Yi - Zi𝜓 and 

Zi|Li, minus the product of both the expected values of Yi - Zi𝜓 and the expected value of Zi|Li. This is 

expressed in Equation 4: 

0 = 𝐸[(𝑌𝑖 − 𝑍𝑖𝜓)𝑍𝑖|𝐿𝑖] − 𝐸[𝑌𝑖 − 𝑍𝑖𝜓]𝐸[𝑍𝑖|𝐿𝑖] (4) 

Next, we rearrange the equation according to two properties of expected values. First, the expected 

value of the sum (this includes subtraction) is equal to the sum of the expected values. Second, 

because the expected value of a constant (in our case the blip 𝜓) is the constant itself, it can be 

brought outside the expected value operator. This allows us to rewrite Equation 4 into Equation 5:  

0 = 𝐸[𝑌𝑖𝑍𝑖|𝐿𝑖] − 𝜓𝐸[𝑍𝑖𝑍𝑖|𝐿𝑖] − 𝐸[𝑌𝑖]𝐸[𝑍𝑖|𝐿𝑖] + 𝜓𝐸[𝑍𝑖]𝐸[𝑍𝑖|𝐿𝑖] (5) 

Next, we rearrange Equation 5 so that the terms that contain blip 𝜓 are on the left side of the 

equation, and the other terms are on the right side of the equation. This gives Equation 6: 

𝜓(𝐸[𝑍𝑖𝑍𝑖|𝐿𝑖] − 𝐸[𝑍𝑖]𝐸[𝑍𝑖|𝐿𝑖]) = 𝐸[𝑌𝑖𝑍𝑖|𝐿𝑖] − 𝐸[𝑌𝑖]𝐸[𝑍𝑖|𝐿𝑖] (6) 

Then, we arrange Equation 6 so that the blip 𝜓 becomes a function of the remaining expected values, 

as shown in Equation 7: 
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𝜓 =
𝐸[𝑌𝑖𝑍𝑖|𝐿𝑖] − 𝐸[𝑌𝑖]𝐸[𝑍𝑖|𝐿𝑖] 

𝐸[𝑍𝑖𝑍𝑖|𝐿𝑖] − 𝐸[𝑍𝑖]𝐸[𝑍𝑖|𝐿𝑖] 
 (7) 

The numerator and denominator of Equation 7 now have the interesting property to be an 

expression of the covariance formula for cov(Yi,Zi|Li) and cov(Zi,Zi|Li) respectively. The covariance of 

two random variables can also be expressed as the expected value of the product of the deviations of 

these random variables. This is how we reformulate both the numerator and denominator, as shown 

in Equation 8: 

𝜓 =
𝐸[(𝑌𝑖 − 𝐸[𝑌𝑖])(𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])]

𝐸[(𝑍𝑖 − 𝐸[𝑍𝑖])(𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])]
 (8) 

Using the distributive law (i.e., the product of a sum is equal to the sum of the products), we 

reformulate both the numerator and denominator, as shown in Equation 9: 

𝜓 =
𝐸[𝑌𝑖(𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖]) − 𝐸[𝑌𝑖](𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])]

𝐸[𝑍𝑖(𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖]) − 𝐸[𝑍𝑖](𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])]
 (9) 

Next, because the expected value of the sum (this includes subtraction) is equal to the sum of the 

expected values, we can rewrite Equation 9 into Equation 10: 

𝜓 =
𝐸[𝑌𝑖(𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])] − 𝐸[𝐸[𝑌𝑖](𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])]

𝐸[𝑍𝑖(𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])] − 𝐸[𝐸[𝑍𝑖](𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])]
 (10) 

It is important to realize that the expected value which is part of another expected value is a constant 

and can be treated as such. Accordingly, past the middle minus sign in both the denominator and 

numerator we bring E[Yi] and E[Zi] outside the expected value operator, for they are constants. To 

the right of the middle minus sign in both the denominator and numerator the expected value of the 

sum is also made the sum of the expected values. Hence, we procure Equation 11:  

𝜓 =
𝐸[𝑌𝑖(𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])] − 𝐸[𝑌𝑖](𝐸[𝑍𝑖|𝐿𝑖] − 𝐸[𝑍𝑖|𝐿𝑖])

𝐸[𝑍𝑖(𝑍𝑖|𝐿𝑖 − 𝐸[𝑍𝑖|𝐿𝑖])] − 𝐸[𝑍𝑖](𝐸[𝑍𝑖|𝐿𝑖] − 𝐸[𝑍𝑖|𝐿𝑖])
 (11) 

It is immediately clear that the latter part of the equation in both the numerator and denominator is 

zero. This gives us equation 12: 

𝜓 =
𝐸[𝑌𝑖(𝑍𝑖|𝐿𝑖 − 𝐸(𝑍𝑖|𝐿𝑖))]

𝐸[𝑍𝑖(𝑍𝑖|𝐿𝑖 − 𝐸(𝑍𝑖|𝐿𝑖))]
 (12) 

In this equation the blip is a function of the observed outcomes Yi, observed treatment exposures Zi, 

and expected treatment exposures E(Zi). Now, we only need to define estimators. For both the 

numerator and denominator we simply need to calculate the mean value. The estimator of the 

expected value of Zi should be based on the confounders to satisfy the conditional exchangeability 

assumption. The estimator of the expected value of Zi is therefore Ê(Zi|Li). This estimator can be a 

logistic regression function that predicts the treatment probability Zi as a function of the confounder 

Li. Accordingly, the final equation is given in Equation 13: 
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�̂� =
∑ [𝑌𝑖 (𝑍𝑖 − �̂�(𝑍𝑖|𝐿𝑖))]𝑛

𝑖=1

∑ [𝑍𝑖 (𝑍𝑖 − �̂�(𝑍𝑖|𝐿𝑖))]𝑛
𝑖=1

 (13)  

We use the closed form solution in Equation 13 to estimate the blip in our example of Table 1. 

Accordingly, for Ê(Zi|Li) we predict that a respondent with Li=0 has a probability of 1/3 and that a 

respondent with Li=1 has a probability of 2/3. This information and the information in Table 1 

concerning the observed outcomes and treatment allocations are then plugged into equation 13, 

leading to the following results in Equation 14: 

�̂� =
−3 ∗ (0 −

1
3) − 3 ∗ (0 −

1
3) + 3 ∗ (0 −

2
3) − 1 ∗ (1 −

1
3) + 5 ∗ (1 −

2
3) + 5 ∗ (1 −

2
3)

0 ∗ (0 −
1
3

) + 0 ∗ (0 −
1
3

) + 0 ∗ (0 −
2
3

) + 1 ∗ (1 −
1
3

) + 1 ∗ (1 −
2
3

) + 1 ∗ (1 −
2
3

)
  

=
(

3
3

) + (
3
3

) − (
6
3

) − (
2
3

) + (
5
3

) + (
5
3

)

−0 − 0 − 0 +
2
3 +

1
3 +

1
3

=

8
3
4
3

= 2 (14) 

Accordingly, the estimate resulting from this g-estimation has resulted in the blip estimate �̂� = 2, 

based solely on the observed outcomes Yi, observed confounder values Li and observed treatment 

assignments Zi. This estimate is equal to the true value of 𝜓.  

 

9 Appendix C: Rank preservation 
In the section ‘SNMMs’ it was stated that the blip value was assumed to be constant on average 

across all respondents. In the literature this is also referred to as an assumption of respondent rank 

preservation (Robins & Hernán, 2008, p. 577). This entails that respondents retain the same rank in 

potential outcome across all treatment conditions. For our simple example, comparing an active 

treatment condition (Z = 1) with a control condition (Z = 0), this means that respondents retain the 

same rank for potential outcomes Y(Z=1) and Y(Z=0). For example, if someone has the highest score 

for Y(Z=1) in a population, that person will also have the highest score for Y(Z=0) in the same 

population. This assumption of respondent rank preservation means that for each respondent the 

potential outcome 𝑌𝑖
∗(0) can be estimated if knowing blip 𝜓0. For example, we could estimate the 

𝑌𝑖
∗(0) for a respondent who was in the active treatment condition Z = 1: 

𝑌𝑖
∗(0) = 𝑌𝑖 − 𝜓𝛼0   

This illustrates that a respondents’ potential outcome of being in the control condition is simply the 

result of a respondent’s observed outcome Yi minus a blip 𝜓0 if respondent i was in the active 

treatment condition. However, respondent rank preservation seems unrealistic and it may be more 

plausible to expect heterogeneity in treatment effects. It has been shown though that the rank 

preservation assumption does not need to hold at the respondent level, but only on average (Robins 

& Hernán, 2008, p. 579). Consequently, in the section ‘SNMMs’ it was stated that the blip value was 

assumed to be constant on average across all respondents. 
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