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Beleidssamenvatting 

Inleiding 

Sinds 2002 werd in Vlaanderen het Gelijke Onderwijskansen (GOK-)programma geïmplementeerd. Dit GOK-

programma voorziet bijkomende lestijden (in het basisonderwijs) of uren-leraar (in het secundair onderwijs) 

voor scholen met een minimum aandeel leerlingen uit kansengroepen. Deze GOK-uren worden in principe 

toegekend in cycli van 3 jaar en dienen ingezet te worden op een vooraf bepaald thema. 

In eerder onderzoek in de schoot van SONO (De Witte, Smet en Van Assche, 2017; De Witte, D’Inverno  en 

Smet, 2018) toonden we aan dat de GOK-middelen geen effecten hadden op de geëvalueerde 

onderwijsuitkomsten noch op de efficiëntie van de scholen. Via innovatieve data-gedreven technieken die 

gebaseerd zijn op ‘Machine Learning’ gaan we nu dieper in op de heterogeniteit van de effecten, dit wil 

zeggen op het verschillend effect dat de GOK-middelen hebben voor verschillende subgroepen. We 

ontwikkelen hiervoor een innovatieve techniek die een oorzakelijke interpretatie van de resultaten toelaat, 

en die de effecten analyseert voor verschillende subpopulaties. Waar traditionele heterogeniteitsanalyses 

(zoals toegepast in de eerdere SONO rapporten) kijken naar vooraf bepaalde subpopulaties laten Machine 

Learning technieken toe om effecten te verkennen en detecteren in endogeen bepaalde subgroepen. Met 

andere woorden, deze data-gedreven techniek verkent alle mogelijke combinaties van subgroepen en gaat 

na waar er wel of geen effect is en kwantificeert dit effect. Dit is nuttig voor beleidsanalyses omdat de 

subgroepen waar een bepaalde interventie effect in sorteert niet noodzakelijk bij voorbaat bekend zijn, en 

omdat er heel veel combinaties van subgroepen mogelijk zijn waardoor het quasi onmogelijk is om alle 

potentiële subgroepen met traditionele technieken te verkennen.   

De methode 

In het bijzonder ontwikkelen we in deze paper een nieuw model dat een uitbereiding vormt op de 

traditionele Machine Learning technieken. Het model laat toe dat observaties (bijvoorbeeld leerlingen of 

scholen) niet perfect een vooraf bepaalde regel naleven. In een traditionele beleidsanalyse zijn we 

geïnteresseerd in het verschil tussen de uitkomsten in een controlegroep en een experimentele groep. In 

een quasi-experimenteel design kan het onderscheid tussen de observaties in de controlegroep en 

experimentele groep komen doordat er een extern vastgestelde regel is (in het jargon een ‘exogeen 

criterium’) is waardoor de observaties bijna willekeurig aan een controle- of experimentele groep worden 

toegewezen. In het geval dat deze toewijzing niet perfect is, moeten er bijkomende schattingen gemaakt 

worden. Traditioneel verloopt dit via een ‘instrumentele variabelen’ techniek. In deze paper bereiden we 

de traditionele Machine Learning techniek uit op twee manieren. Ten eerste geven we de resultaten een 

causale (of oorzakelijke) interpretatie doordat we focussen op de observaties die dicht rond de extern 

vastgestelde regel liggen. Het is met andere woorden bijna het toeval dat bepaalt of observaties wel of niet 

de extra middelen krijgen. Ten tweede innoveert de methode doordat het ook niet perfecte toewijzing 

toelaat. Hiervoor combineren we inzichten uit de literatuur van ‘instrumentele variabelen’ met ‘machine 

learning’.  

Aangezien de voorgestelde methode focust op het vinden van heterogene effecten, en vooral bruikbaar is 

op grote (administratieve) datasets, kan de methode toegepast worden voor diverse onderzoeksvragen. 

Om het gebruik te faciliteren werd een routine ontwikkeld in het open-source programma R. Deze routine 

kan gebruikt worden door onderzoekers of beleidsmedewerkers om de heterogene effecten van 



interventies te analyseren, en dus om de subpopulaties af te bakenen waar een interventie werkt. De 

routine is vrij beschikbaar.  

Data 

Om de heterogene effecten te meten maken we gebruik van bestaande administratieve databanken 

(Vlaams Ministerie van Onderwijs en Vorming) betreffende het secundair onderwijs. De gegevens zijn 

beschikbaar op leerlingniveau. Naast de data met betrekking tot de GOK-indicatoren en de 

uitkomstvariabelen (nl. zittenblijven en behalen van een A-attest), beschikken we ook over informatie over 

de onderwijscarrière en enkele kenmerken van leerlingen (zoals geslacht, thuistaal, zittenblijven in het lager 

onderwijs, en of een leerling schoolliep in het buitengewoon lager onderwijs). Op schoolniveau beschikken 

we over informatie over de leraren (leeftijd, ervaring, bekwaamheidsbewijs) en de schoolleiding (leeftijd en 

ervaring).   

Resultaten eerste graad 

In de empirische analyse focussen we allereerst op de eerste graad van het secundair onderwijs. Als scholen 

minimum 10% GOK-leerlingen in de eerste graad van het secundair onderwijs hebben, kunnen ze aanspraak 

maken op de GOK-financiering. Bovendien moeten scholen ook minstens 6 GOK-uren genereren. Scholen 

die een minder hoog aandeel GOK-leerlingen hebben of die minder dan 6 GOK-uren genereren, maken geen 

aanspraak op de middelen. Net als in vorige rapporten (De Witte et al., 2017 en 2018) focussen we op de 

observaties rond deze grens van 10% GOK-leerlingen. Op deze manier kunnen we voor de scholen rond de 

grens oorzakelijke uitspraken doen over het effect van de GOK-uren. Alle analyses worden op leerlingniveau 

uitgevoerd.  

Bij het toepassen van de data-gedreven Machine Learning techniek observeren we, net als in voorgaande 

rapporten, geen effect op de gemiddelde leerling. Dit bevestigt het eerdere onderzoek met traditionele 

regressie discontinuïteitsmethode en efficiëntie-analyse. Machine Learning is echter een veel flexibelere 

techniek, waardoor we nu diepgaander zicht kunnen krijgen op mogelijke heterogene effecten.  

We kijken allereerst naar het behalen van een A-attest als uitkomstvariabele. Het aandeel leerlingen in onze 

steekproef die een A-attest behaalt is 91,73%. Rond de exogene grens is er gemiddeld een positief, maar 

geen significant, effect van de GOK-middelen op het behalen van een A-attest (in lijn met de bevindingen 

van De Witte et al., 2017). De heterogeniteitsanalyses laten echter zien dat er differentiële effecten schuilen 

afhankelijk van het zittenblijven van de leerling in het lager onderwijs: rond de 10% grens zijn de effecten 

van de GOK-middelen groter voor leerlingen met een geschiedenis van zittenblijven. Hoewel dit effect niet 

statistisch significant is, toont het aan de GOK-middelen (in afwezigheid van betere uitkomstmaatstaven 

zoals testscores) vooral effect kunnen hebben bij leerlingen met lagere schoolprestaties. Als tweede 

drijfveer van de heterogeniteit observeren we verschillen in het effect volgens de gemiddelde leeftijd van 

het lerarenkorps: rond de 10% grens leiden de GOK-middelen voor leerlingen in scholen met jongere leraren 

tot het significant meer (7% meer) behalen van een A-attest als deze leerlingen geen verleden hebben van 

zittenblijven in het lager onderwijs. Ook voor leerlingen met zittenblijven in het basisonderwijs zien we nog 

steeds een positief (maar geen significant) effect van de GOK-middelen in scholen met jonge leerkrachten. 

Deze bevindingen raken aan de brede literatuur die het belang aantoont van ervaren leerkrachten 

(Goldhaber, 2019). In het bijzonder lijken onze resultaten te suggereren dat, rond de 10% grens, de GOK-

financiering een positief significant effect heeft als deze wordt toegekend aan scholen met meer jonge 

leerkrachten. Als we het geobserveerde effect verder uitsplitsen naar de ervaring van de schoolleider, 



observeren we dat de GOK-middelen vooral effect hebben voor leerlingen zonder zittenblijven in het lager 

onderwijs, in scholen met jonge leerkrachten én minder ervaren schoolleiders.  

Als tweede uitkomstvariabele kijken we naar de effecten op doorstroom zonder zittenblijven. Rond de 10% 

grens gaat ongeveer 98% van de leerlingen in de twee jaren van de eerste graad over zonder zittenblijven. 

Ook hier observeren we in lijn met het eerder onderzoek een positief maar niet significant effect op de 

gemiddelde leerlingen. Wel observeren we rond de grens heterogene (maar niet significante) effecten voor 

bepaalde leerlingen. In het bijzonder leidt de GOK-financiering tot positieve effecten voor jongens, en 

negatieve effecten voor meisjes. Dit is deels te wijten aan de grotere kans voor jongens (63%) op 

zittenblijven. Ten tweede observeren we dat leerlingen in scholen met jonge schoolleiders een positief 

(maar niet significant) effect van de GOK-financiering ondervinden.  

Resultaten tweede en derde graad 

Vervolgens focussen we op de tweede en derde graad van het secundair onderwijs. Als scholen minimum 

25% GOK-leerlingen in de tweede en derde graad van het secundair onderwijs hebben, kunnen ze aanspraak 

maken op de GOK-financiering. Bovendien moeten scholen ook minstens 6 GOK-uren genereren. Doordat 

de 25% grens een stuk hoger ligt dan de grens in de eerste graad kan verwacht worden dat het tweede 

criterium (6 GOK-uren) minder bindend zal zijn. Hierdoor zal de voorgestelde innovatie in de machine 

learning techniek (nl. we houden rekening met de niet perfecte toewijzing) minder relevant worden, en 

komt het model dichter bij een traditionele machine learning benadering. Desalniettemin is het 

voorgestelde algoritme voldoende flexibel om hier rekening mee te houden.  

De resultaten voor de tweede en derde graad suggereren rond de 25% grens geen heterogene effecten 

voor het behalen van een A-attest als uitkomstvariabele. Het algoritme kan met andere woorden geen 

subgroepen vinden waar het effect significant sterker of minder sterk wordt. Voor de tweede en derde 

graad secondair onderwijs vinden we rond de 25% grens wel heterogene effecten voor doorstroom zonder 

zittenblijven. Waar meisjes in scholen met financiering het minder goed lijken te doen, vinden we vooral 

een sterk positief heterogeen effect voor jongens zonder zittenblijven.   

Belang van professionele ontwikkeling 

Hoewel de resultaten inzicht kunnen bieden in potentiële beleidsacties, is de stap van resultaten naar beleid 

niet eenduidig. Immers, de geobserveerde resultaten zijn waarschijnlijk indicaties van onderliggende 

factoren en processen, zodat ze vooral richting geven voor verder onderzoek. De heterogene effecten 

kunnen beleidmakers wel helpen om te verkennen voor welke type scholen de observeerde effecten het 

hoogst zijn. Zo kan er nagegaan worden waarom rond de 10% grens vooral scholen met minder ervaren 

leerkrachten en directies baat lijken te hebben bij de bijkomende GOK-uren. Gezien het geobserveerde 

verband met ervaring kunnen de resultaten ook suggereren om meer middelen te voorzien voor 

professionele ontwikkeling. Zo gaf eerder SONO onderzoek (Vanblaere, Tuytens en Devos, 2017) reeds aan 

dat professionele ontwikkeling van leraren, als onderdeel van een breder personeelsbeleid, kan bijdragen 

tot kwaliteitsvol onderwijs. De resultaten versterken ook het belang aan professionele ontwikkeling van 

beginnende leraren in de vorm van mentoring, coaching of aanvangsbegeleiding (Van Hoof en Van 

Peteghem, 2013; Compen, De Witte en Schelfhout, 2019).  
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Abstract

This paper introduces an innovative Bayesian machine learning algorithm to draw

heterogeneous causal effects in the presence of imperfect compliance (e.g., an ir-

regular assignment mechanism). We show, through Monte Carlo simulations, that

the proposed Bayesian Causal Forest with Instrumental Variable (BCF-IV) algo-

rithm outperforms other machine learning techniques tailored for causal inference

(namely, Generalized Random Forest and Causal Trees with Instrumental Variable)

in estimating the causal effects. Moreover, we show that it converges to an optimal

asymptotic behaviour in discovering the drivers of heterogeneity in a simulated sce-

nario. BCF-IV sheds a light on the heterogeneity of causal effects in instrumental

variable scenarios and, in turn, provides policy-makers a relevant tool for targeted

policies. Its empirical application evaluates the effects of additional funding on stu-

dents’ performances. The results indicate that BCF-IV could be used to enhance

the effectiveness of school funding on students’ performance by 3.2 to 3.5 times.

Keywords: Machine Learning; Bayesian Causal Forest; Honest Causal Trees;

School Funding; Students’ Performance

JEL Codes: H52; I21; I28

∗We are grateful to participants to KU Leuven, Flemish Ministry of Education, Harvard University
and IMT Lucca seminars and at the Atlantic Causal Inference Conference (ACIC 2019). We want to
thank Giovanna D’Inverno, Steven Groenez, Francesca Dominici, Fabrizia Mealli, Mike Smet, Melissa
Tuytens, and Paolo Zacchia for the useful comments provided. Kristof De Witte acknowledges funding
from Steunpunt SONO.
†Corresponding author. IMT School for Advanced Studies, Lucca, Italy and KU Leuven, Leuven, Belgium. Mail to:

falco.bargaglistoffi@imtlucca.it. Laboratory for the Analysis of Complex Economic Systems, IMT School for Advanced
Studies, piazza San Francesco 19 - 55100 Lucca, Italy. LEER - Leuven Economics of Education Research, Faculty of
Economics and Business, KU Leuven, Naamsestraat 69 - 3000 Leuven, Belgium.
‡KU Leuven, Leuven, Belgium and Maastricht University, Maastricht, The Netherlands. Mail to:

kristof.dewitte@kuleuven.be. LEER - Leuven Economics of Education Research, Faculty of Economics and Business,
KU Leuven, Naamsestraat 69 - 3000 Leuven, Belgium. UNU-Merit, Maastricht University, Minderbroedersberg 4 - 6211
LK Maastricht, The Netherlands.
§IMT School for Advanced Studies, Lucca, Italy. Mail to: giorgio.gnecco@imtlucca.it. Laboratory for the Analysis of

Complex Economic Systems, IMT School for Advanced Studies, piazza San Francesco 19 - 55100 Lucca, Italy.



1 Introduction

In recent years the ability of machines to solve increasingly more complex tasks has grown

exponentially. At the core of this revolution (Sejnowski, 2018) there is the staggering pre-

dictive power of machine learning algorithms. However, prediction does not imply causa-

tion (Lechner, 2019). In social and health sciences the largest part of scientific research

questions deals with inferring a causal relationship (e.g., evaluating the impact of a policy,

the effects of drug, the returns from a marketing or business strategy, etc.). Moreover, fol-

lowing the growing availability of large datasets, the necessity to deal with problems con-

nected with potentially heterogeneous treatment effects is stronger than in the past. The

availability of large datasets makes it possible to investigate and, in turn, customize causal

effect estimates for populations subsets and even for individuals (Athey, 2018). In this sce-

nario, machine learning techniques are increasingly used to address causal inference tasks

and, in particular, to estimate heterogeneous causal effects (Hill, 2011; Su et al., 2012;

Green and Kern, 2012; Athey and Imbens, 2016; Hahn et al., 2017; Wager and Athey,

2018; Lee et al., 2018; Lechner, 2019). A growing literature seeks to apply supervised ma-

chine learning techniques to the problem of estimating heterogeneous treatment effects.

Foster et al. (2011) estimate µ(1, x) = E[Yi(1)|Xi = x] and µ(0, x) = E[Yi(0)|Xi = x]

(both using random forests), then calculate τ̂i = µ̂(1, x)− µ̂(0, x). The machine learning

algorithms to estimate τ̂i as a function of the units’ attributes, Xi, can then be used.

However, most of these techniques are tailored for causal inference in settings where the

treatment is randomly assigned to the units and do not address the imperfect compliance

issues. Nevertheless, in the real world, the implementation of policies or interventions

often result in imperfect compliance, which makes the policy evaluation complicated.

Imperfect compliance may arise in observational studies where the assignment to the

treatment can be different from the receipt of the treatment (e.g., individuals are ran-

domly assigned to a treatment, but not all the units that are assigned to it actually

receive it). Recently, some algorithms have been proposed to deal with imperfect com-

pliance (Athey et al., 2016; Hartford et al., 2016; Wang et al., 2018; Bargagli Stoffi and

Gnecco, 2019). However, these methods exhibit three principle limitations: (i) random
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forest-based algorithms for causal inference require large samples to converge to a good

asymptotic behaviour for the estimation of causal effects, as shown in Hahn et al. (2018b)

and Wendling et al. (2018); (ii) deep learning-based algorithms lack interpretability of the

machine learning black-box which can expose them to critiques, especially in the context

of social sciences; (iii) the algorithms proposed by Wang et al. (2018) and Bargagli Stoffi

and Gnecco (2018, 2019) are based on single learning algorithms that perform worse as

compared to multiple learning algorithms (i.e., ensemble methods)1.

To address and accommodate these shortcomings, this paper proposes a novel ensem-

ble Bayesian machine learning algorithm to draw inference on the heterogeneity of causal

effects in scenarios with imperfect compliance to an intervention, or so-called irregular

assignment mechanisms. This novel algorithm consistently outperforms all the alterna-

tive techniques in precisely estimating the causal effects, as shown through Monte Carlo

simulations, especially in small samples. Monte Carlo simulations are used to model the

probability of different outcomes in a process that cannot easily be predicted due to the

intervention of random variables. It is a technique used to understand the impact of risk

and uncertainty in prediction and forecasting models. Moreover, the method suggested

in this paper performs in a manner similar to other non-Bayesian machine learning tech-

niques such as Generalized Random Forests in discovering the heterogeneity driving vari-

ables, eventually converging to an optimal asymptotic behaviour in a simulated scenario.

The method we propose contributes the literature with furnishing interpretable results

and an easy-to-modify algorithm that allows researchers to incorporate prior knowledge

on the distribution of the outcome into the model and to tune the complexity of the algo-

rithm. Using this approach, we can evaluate the heterogeneous impact of an intervention

with imperfect compliance, and consequently, target only those observations which ben-

efit most from the intervention (or not target those observations with negative effects).

Targeted policies are relevant as the call for personalized interventions has unfurled in

all social sciences and in economics in particular (Athey and Imbens, 2017). The main

objective of targeted policies studies is to inform policy-makers about the best alloca-

1Ensemble methods have extensively been shown to outperform single learning algorithms in predic-
tion tasks (Van der Laan et al., 2007).
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tion of treatments to individuals or sub-populations (Kitagawa and Tetenov, 2018). The

idea behind these policies is to target those observations that benefit (the most) from a

certain intervention in order to get two possible welfare gains: (i) reducing the costs of

an intervention with constant effect sizes, or (ii) increasing the intervention effects for

given costs (Kleinberg et al., 2017). The evaluation of education policies is a promising

field for the application of heterogeneous causal effects discovery and, in turn, targeted

policies. This is due to, at least, two factors: (i) in this context, there is a clear source of

heterogeneity given by the disparate profiles of schools and students; and (ii) it is possi-

ble to gather large (administrative) datasets. In a similar framework, machine learning

provides a tailored, data-driven tool for the evaluation of the heterogeneity in the causal

effects, and, consequently, the implementation of targeted policies.

The paper innovates the literature in both a methodological and an empirical perspec-

tive. First, we develop a machine learning algorithm tailored to draw causal inference

in situations where the assignment mechanism is irregular, namely the assignment de-

pends on the observed and unobserved potential outcomes (Imbens and Rubin, 2015).

This methodology contributes to the increasing use of machine learning techniques to

draw causal inference (Athey and Imbens, 2017). In particular, we propose to modify a

machine learning technique (namely, Bayesian Causal Forests) developed for causal in-

ference goals (Hahn et al., 2017) to fit an instrumental variable setting (Angrist et al.,

1996). The method, Bayesian Instrumental Variable Causal Forest (BCF-IV), is an en-

semble semi-parametric Bayesian regression model that directly builds on the Bayesian

Additive Regression Trees (BART) algorithm (Chipman et al., 2010). This technique is

a refined version of the random forest algorithm (Breiman, 2001): BART obtains more

precise estimates both in non-causal inference scenarios (Chipman et al., 2010) and in

causal inference settings (Hahn et al., 2018b) by employing a full set of prior distributions

on the depth of the trees, on the noise and on the outcome in the leaves. Second, we

evaluate the fit of the proposed algorithm by comparing it with two alternative machine

learning methods explicitly developed to draw causal inference in the presence of irregu-

lar assignment mechanisms: namely, the Generalized Random Forests (GRF) algorithm

3



(Athey et al., 2016) and the Honest Causal Trees with Instrumental Variables (HCT-

IV) algorithm (Bargagli Stoffi and Gnecco, 2019). Using Monte Carlo simulations, we

evaluate each algorithm with respect to three dimensions: (i) the choice of the correct

source of heterogeneity (i.e., the choice of the right splitting variable); (ii) the choice

of the correct cutoff given a discrete or continuous splitting variable, and (iii) the esti-

mation of the heterogeneous causal effects. These dimensions are consistent with recent

evaluations of various machine learning methods for causal inference that highlight the

excellence of Bayesian algorithms for causal inference (Hahn et al., 2018b; Wendling et al.,

2018). We show that for each dimension, BCF-IV outperforms both GRF and HCT-IV

in small samples and converges to an optimal asymptotic behaviour. Third, in an empir-

ical application, BCF-IV is used for the evaluation of the effects of additional resources

for disadvantaged students on students’ performance in a fuzzy regression discontinuity

design scenario (Hahn et al., 2001). In particular, using a unique administrative dataset,

we employ BCF-IV to evaluate the heterogeneity in the effects of the ‘Equal Educational

Opportunities Program’ promoted by the Flemish Ministry of Education starting from

2002. The program is aimed at providing additional funding for secondary schools with

high share of disadvantaged students (De Witte et al., 2018). We focus on the effects

of additional funding on two outcomes: (i) students’ performance, namely if a certain

student can progress to the next year without restrictions; (ii) students’ progresses to the

following year without grade retention. The Flemish Ministry of Education provided us

with data on the universe of pupils in the first stage of secondary education in the school

year 2010/2011 (135,682 students). We obtained data on student level characteristics and

school level characteristics. Moreover, this setting provides us with a quasi-experimental

identification strategy since the additional funding is provided to schools based on being

above or below an exogenously set threshold regarding the proportion of disadvantaged

students. There is also a second (exogenously set) eligibility criterion stating that schools

have to generate a minimum number of teaching hours. This provides us with an imper-

fect compliance setting, as not all the schools fulfill both the criteria, in which we are

able to exploit a fuzzy regression discontinuity design to draw causal effects. The results
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of our empirical application suggest that, although the effects of additional funding on

the overall population of students are found to be not significant2, there is significant

heterogeneity in the causal effects: the effects on students’ performance are positive and

significant if we focus on the sub-population of students in schools with younger teachers

(namely, teachers with lower age than the average) and less senior principals (namely,

principals with a level of seniority below the average)3. These results can inform policy-

makers in multiple ways: the heterogeneous drivers could, on the one hand, help them

enhancing the policy effectiveness by targeting just the schools with the highest shares

of pupils that benefit the most from the additional funding. On the other hand, policy-

makers could investigate more in depth why some schools do not benefit from the policy

and ultimately provide additional tools to these schools in order to enhance the policy

outcomes.

The methodology proposed in this paper can be more widely applied to evaluations

of the heterogeneous impact of an intervention in the presence of an irregular assignment

mechanism4. The first method developed in this field was the Generalized Random

Forest algorithm by Athey et al. (2016). Following this contribution Hartford et al.

(2016) adapted a deep-learning based algorithm for counterfactual predictions in an IV

scenario. The latest contributions by Wang et al. (2017, 2018) and Bargagli Stoffi and

Gnecco (2019) built methods tailored for imperfect compliance based on decision tree

algorithms. This was done in order to provide more interpretable algorithms and simpler

and easier to implement policy rules. The need to provide to policy-makers simple,

interpretable and general rules was highlighted also in a recent the contribution by Lee

et al. (2018).

The remainder of this paper is organized as follows: in Section 2 we provide a general

overview on the causal inference and the applied machine learning frameworks and we

introduce our algorithm; in Section 3 we compare the performance of our algorithm with

2This is in line with further researches of additional funding on school level outcomes (De Witte
et al., 2018).

3As we show in Section 4.3, these results are in line with the literature of aging on teachers’ perfor-
mance.

4An R function, for BCF-IV is available upon request to the corresponding author. The function is
built on the R package BCF by Hahn et al. (2017).
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the performance of other methods already established in the literature; in Section 4 we

depict the usage of our algorithm in an educational scenario to evaluate the heterogeneous

causal effects of additional funding to schools; Section 5 discusses the results and high-

lights further applications of heterogeneous causal effects discovery and targeted policies

in education.

2 Bayesian Instrumental Variable Causal Forest

2.1 Notation

This paper contributes to the literature by developing a novel machine learning approach

for the estimation of conditional causal effects in the presence of an irregular assignment

mechanism.

We follow the standard notation of the Rubin’s causal model (Rubin, 1974, 1978;

Imbens and Rubin, 2015). Given a set of N units, indexed by i = 1, ..., N , we denote

with Yi a generic outcome variable, with Wi a binary treatment indicator and, with X a

N × P matrix of control variables. Given the Stable Unit Treatment Value Assumption

(SUTVA), that excludes interference between the treatment assigned to one unit and the

potential outcomes of another (Imbens and Rubin, 2015), we can postulate the existence

of a pair of potential outcomes: Yi(Wi). Namely, the potential outcome for a unit i if

assigned to the treatment is Yi(Wi = 1) = Yi(1), and the potential outcome if assigned to

the control is Yi(Wi = 0) = Yi(0). We cannot observe for the same unit both the potential

outcomes at the same time, however we observe the potential outcome that corresponds

to the assigned treatment: Y obs
i = Yi(1)Wi + Yi(0)(1−Wi).

In order to draw proper causal inference in observational studies researchers need to

assume strong ignorability to hold. This assumption states that:

Yi(Wi) ⊥⊥ Wi|Xi (1)

and

0 < Pr(Wi = 1|Xi = x) < 1 ∀ x ∈ X (2)
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where X is the feature space. The first assumption (unconfoundedness) rules out the

presence of unmeasured confounders while the second condition needs to be invoked to

be able to estimate the unbiased treatment effect on all the support of the covariates

space. If these two conditions hold, we are in presence of the so-called regular assignment

mechanism. In such a scenario the Average Treatment Effect (ATE) can be expressed as:

τ = E[Y obs
i |Wi = 1]− E[Y obs

i |Wi = 0], (3)

and one can define, following Athey and Imbens (2016), the Conditional Average Treat-

ment Effect (CATE) simply as:

τ(x) = E[Y obs
i |Wi = 1, Xi = x]− E[Y obs

i |Wi = 0, Xi = x]. (4)

CATE is central for targeted policies because it enables the researcher to investigate the

heterogeneity in causal effects. For instance, we may be interested in assessing how the

effects of an intervention vary within different sub-populations.

In observational studies, the assignment to the treatment may be different from the

reception of the treatment. In these scenarios, where one allows for non-compliance

between the treatment assigned and the treatment received, one can assume that the

assignment is unconfounded, while the receipt is confounded (Angrist et al., 1996). In

such cases, one can rely on an instrumental variable (IV), Zi, to draw proper causal

inference5. Zi can be thought as a randomized assignment to the treatment, that affects

the receipt of the treatment Wi, without directly affecting the outcome Yi (exclusion

restriction). Thus, one can then express the treatment received as a function of the

treatment assigned: Wi(Zi).

If the classical four IV assumptions6 (Angrist et al., 1996) hold, one can get the causal

effect of the treatment on the sub-population of compliers, the so-called Complier Average

5Throughout this Section and in all the paper we assume the instrumental variable to be binary but,
one could, in principle, relax this assumption. However, at the moment there are no algorithms available
for the estimation of causal effects with continuous treatment variable: we leave this to further research.

6See Appendix A for a detailed discussion of the four assumptions and how they are assumed to hold
in our application.
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Causal Effect (CACE), that is:

τ cace = ITTY,C =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Wi|Zi = 1]− E[Wi|Zi = 0]
=
ITTY
πC

. (5)

In this paper we introduce a novel conditional version of CATE. The conditional CACE,

τ cace(x), can be thought as the CACE for a sub-population of observations defined by a

vector of characteristics x:

τ cace(x) = ITTY,C(x) =
E[Yi|Zi = 1, Xi = x]− E[Yi|Zi = 0, Xi = x]

E[Wi|Zi = 1, Xi = x]− E[Wi|Zi = 0, Xi = x]
=
ITTY (x)

πC(x)
. (6)

2.2 Estimating Conditional Causal Effects with Machine Learn-

ing

In recent years, various algorithms have been proposed to estimate conditional causal

effects (i.e, CATE and τ cace(x)). Most algorithms focus on the estimation of CATE

(Hill, 2011; Su et al., 2012; Green and Kern, 2012; Athey and Imbens, 2016; Hahn et al.,

2017; Wager and Athey, 2018; Lee et al., 2018; Lechner, 2019) while just a few focus on

the estimation of τ cace(x) (Athey et al., 2016; Hartford et al., 2016; Wang et al., 2018;

Bargagli Stoffi and Gnecco, 2019). In this paper, we rework an algorithm used for the

estimation of CATE to fit an irregular assignment mechanism scenario. In particular,

the algorithm that we modify is the Bayesian Causal Forest (BCF) algorithm (Hahn

et al., 2017). BCF builds on the Bayesian Additive Regression Trees (BART) algorithm

(Chipman et al., 2010) which in turn is a Bayesian version of an ensemble of Classification

and Regression Trees (CART) (Friedman et al., 1984)7.

CART is a widely used algorithm for the construction of binary trees (namely, trees

where each node is splitted into only two branches). Figure 1 illustrates how the binary

partitioning works in practice in a simple case with just two regressors x1 ∈ [0, 1] and

x2 ∈ [0, 1].

7Chipman et al. (2010) highlight how their algorithm is different from other ensemble methods such
as the Random Forest algorithm (Breiman, 2001).
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Figure 1: (Left) An example binary tree. The internal nodes are labelled by their splitting rules and

the terminal nodes labelled with the corresponding parameters li.

(Right) The corresponding partition of the sample space.

Binary trees are named classification trees when the outcome variable can take a

discrete set of values and regression trees when the outcome variable takes continuous

values. The CART algorithm associates, for every individual belonging to a partition

of the feature space, a conditional prediction for the outcome variable. The task of a

binary tree is to estimate the conditional expectation of the observed outcome, on the

basis of the information on features and outcomes for units in the training sample, and

to compare the resulting estimates on a test sample to tune the complexity of the tree,

in order to minimize the “error”8 between the true and estimated values of Yi(x) within

each partition.

The accuracy of binary trees predictions, Ŷi(x), can be dramatically improved by

constructing trees iteratively. A random forest (RF) consists in an ensemble of trees,

where each tree is constructed by randomly sampling the observations and randomly

drawing the covariates (predictors, in the machine learning literature) used to build each

tree (Breiman, 2001). One of the main problems of RF is that they tend to “overfit”

the data on which they are trained. “Overfitting” leads to a scarce generalizability of

the predictions on samples different from the training set. In order to avoid this issue,

Bayesian Additive Regression Trees were proposed by Chipman et al. (2010).

BART, as well as BCF, are “refined versions” of the RF algorithm. BART is, as the

RF, a sum-of-trees ensemble algorithm, but its estimation approach used to obtain the

8There are various “error” measures used to optimize binary trees. The most widely used are the
mean-squared-error for regression trees and the entropy or the Gini index for classification trees.
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values of Yi(x) relies on a fully Bayesian probability model (Kapelner and Bleich, 2013).

In particular, the BART algorithm can be expressed as:

Yi = f(Xi) + εi ≈ T1(Xi) + ...+ Tq(Xi) + εi, εi ∼ N (0, σ2) (7)

where the q distinct binary trees are denoted by T9.

The Bayesian component of the algorithm is incorporated in a set of three different

priors on: (i) the structure of the trees (this prior is aimed at limiting the complexity of

any single tree T and it works as a regularization device); (ii) the probability distribution

of data in the leaves (this prior is aimed at shrinking the leaf predictions towards the center

of the distribution of the response variable Yi); (iii) the error variance σ2 (which bounds

away σ2 from very small values that would lead the algorithm to overfit the training

data)10. The aim of these priors is to “regularize” the algorithm, preventing single trees

to dominate the overall fit of the model (Kapelner and Bleich, 2013). Moreover, BART

allows the researcher to tune the variables’ importance by departing from the original

formulation of the Random Forest algorithm where each variable is equally likely to

be chosen from a discrete uniform distribution (with probability 1
p
) to build a single

tree learner. These Bayesian tools give the researcher the possibility to mitigate the

“overfitting” problem of RFs and to tune the algorithm with prior knowledge.

Thus far, the algorithms that we discussed were tailored to find the heterogeneity in

the response variable Yi(x), but are not developed to estimate the heterogeneity in the

causal effects. The BCF algorithm (Hahn et al., 2017) is a semi-parametric Bayesian

regression model that directly builds on BART, but introduces some significant changes

in order to estimate heterogeneous treatment effects in regular assignment mechanisms

(even in the presence of strong confounding). The main novelties of this model are the

9T represents the entire tree: its structure, its nodes and its leaves (terminal nodes).
10The choice of the priors, and the derivation of the posterior distributions, is discussed in depth by

Chipman et al. (2010) and Kapelner and Bleich (2013). Namely, (i) the prior on the probability that a
node will split at depth k is β(1 + k)−η where β ∈ (0, 1), η ∈ [0,∞) (the hyper-parameters are generally
chosen to be η = 2 and β = 0.95); (ii) the prior on the probability distribution in the leaves is a normal
distribution with zero mean: N (0, σ2

q ) where σq = σ0/
√
q and σ0 can be used to calibrate the plausible

range of the regression function; (iii) the prior on the error variance is σ2 ∼ InvGamma(v/2, vλ/2)
where λ is determined from the data in a way that the BART will improve 90% of the times the RMSE
of an OLS model.
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expression of the conditional mean of the response variable as a sum of two functions and

the introduction, in the BART model specification for causal inference, of an estimate of

the propensity score, E[Wi = 1|Xi = x] = π(x), in order to improve the heterogeneous

treatment effects estimation11 (in the next Subsection we will see in detail these changes).

BCF performs dramatically better than other machine learning algorithms for causal

inference in the presence of randomized and regular assignment mechanisms, as shown

by the results of the Atlantic Causal Inference Conference (ACIC) competition in 2016

and 2017 (Hahn et al., 2018b).

2.3 Extending BCF to an IV Scenario: Bayesian Instrumental

Variable Causal Forest

What would happen if the assignment mechanism was neither randomized nor regular

but irregular? As shown in Bargagli Stoffi and Gnecco (2019), in imperfect compliance

settings a näıve application of methods developed for the estimation of heterogeneous

causal effects in randomized or regular assignment mechanisms introduces a large bias

in the estimation of the heterogeneous causal effects. This reason drives the need for a

new algorithm, the Bayesian Instrumental Variable Causal Forest (BCF-IV), tailored for

causal inference on heterogeneous effects in the presence of irregular mechanisms.

The BCF-IV algorithm is constructed in two steps:

1. Discovering heterogeneity for the conditional intention-to-treat (ITTY (x));

2. Estimation of the conditional CACE (τ cace(x)) within the sub-populations defined

in the first step.

We discuss the two steps in detail in the next Section.

11It is important to highlight that the propensity score is not used to estimate the causal effects
but to moderate the distortive effects in treatment heterogeneity discovery due to strong confounding.
Moreover, since BCF includes the entire predictors’ vector, X, even if the propensity score is mis-specified
or poorly estimated, the model allows for the possibility that the response remains correctly specified
(Hahn et al., 2017). In Appendix B, we show that even if π̂(x) is incorrectly specified the results are still
widely robust.
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2.3.1 Heterogeneity in the Conditional ITT

The BCF-IV algorithm starts from modifying (7) to make it tailored for the estimation

of the intention-to-treat, by including the instrumental variable Zi:

Yi = f(Xi, Zi) + εi ≈ T1(Xi, Zi) + ...+ Tq(Xi, Zi) + εi, εi ∼ N (0, σ2) (8)

where, for simplicity, we assume the error to be a mean zero additive noise as in Hahn

et al. (2017). The conditional expected value can be expressed as:

E[Yi|Zi = z,Xi = x] = µ(z, x), (9)

and in turn the conditional intention-to-treat, ITTY (x), is:

ITTY (x) = E[Yi|Zi = 1, Xi = x]− E[Yi|Zi = 0, Xi = x] = µ(1, x)− µ(0, x). (10)

Then, we model (9), in a regression scenario, reworking the objective function proposed

by Hahn et al. (2017), as:

E[Yi|Zi = z,Xi = x] = µ(x, π̂(x)) + ITTY (x)z (11)

where π̂(x) is the estimated propensity score for the instrumental variable:

π(x) = E[Zi = 1|Xi = x]. (12)

The expression of E[Yi|Zi = z,Xi = x] as a sum of two functions is central: the first

component of the sum, µ(x, π̂(x)), directly models the impact of the control variables

on the conditional mean of the response (the component that is independent from the

treatment effects) while the second component ITTY (x)z models directly the intention-to-

treat effect as a nonlinear function of the observed characteristics (this second components

captures the heterogeneity in the intention-to-treat). Both the functions µ and ITTY are

given independent priors. The priors are chosen in line with Hahn et al. (2017) to be for
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the first component the same priors of Chipman et al. (2010) (see Section 2.2), while for

the second component the priors are changed in a way that allows for less deep, hence

simpler, trees12.

The expression of E[Yi|Zi = z,Xi = x] as a sum of two functions has a double effect:

(i) on the one hand, it allows the algorithm to learn which component in the heterogeneity

of the conditional mean of the outcome is driven by a direct effect of the control variables

and which component is the true heterogeneity in the effects of the assignment to the

treatment Zi on Yi; (ii) on the other hand, it allows the predictions of the treatment effect

driven by the BART to be modelled directly and separately with respect to the impact

of the control variables (Hahn et al., 2017).

The estimated propensity score is not used for the estimation of the effects but is

included, as an additional covariate, in the first component of (11) to mitigate possible

problems connected to regularization induced confounding (RIC)13 and targeted selec-

tion14. In our application, none of these problems is present since the specification of

the propensity score for Zi is known by the researcher (namely, π̂(x) = π(x)). However,

in scenarios where the instrumental variable is not randomized ex-ante, the inclusion of

π̂(x) leads to an improvement in the discovery of the heterogeneity in the causal effect

(Hahn et al., 2018b). Furthermore, it is important to highlight that choosing a mis-

specified definition of π̂(x) does not impact in a significant way the quality of the results

as shown in B. This is due to the fact that this first step of our algorithm is not directly

about estimating the conditional CACE but is tailored to discover the heterogeneity in

ITTY (x).

Once one estimated with the BCF-IV the unit-level intention-to-treat, one can build

a simple binary tree on the fitted values (ITT
∧

Y (Xi)) to discover the drivers of the het-

erogeneity.

12The depth penalty parameters are set to be η = 3 and β = 0.25 (instead of η = 2 and β = 0.95).
13RIC is analyzed in depth in Hahn et al. (2018a). RIC issues rise when the ML algorithm used for

regularizing the coefficient does not shrink to zero some coefficients due to a nonzero correlation between
Z and X resulting in an additional degree of bias that is not under the researcher’s control.

14Targeted selection refers to settings where the treatment (or in an IV scenario the assignment to the
treatment) is assigned based on an ex-ante prediction of the outcome conditional on some characteristics
Xi. We refer to Hahn et al. (2017) for a discussion of targeted selection problems.
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2.3.2 Estimation of Conditional CACE

Once heterogeneous patterns in the intention-to-treat are learned from the algorithm, one

can estimate the conditional CACE, τ cace(x). To do so, one can simply use the method of

moments estimator in (6) within all the different sub-populations detected in the previous

step.

The conditional CACE can be estimated in a generic sub-sample (i.e., for each Xi ∈ Xj)

as:

τ̂ cace(Xi) =
ITT
∧

Y (Xi)

π̂C(Xi)
(13)

where π̂C(Xi) is estimated as:

π̂C(Xi) =
1

N1,l

∑
l:Xl∈Xj

ZlWl −
1

N0,l

∑
l:Xl∈Xj

(1− Zl)Wl, (14)

and ITT
∧

Y (Xi) as:

ITT
∧

Y (Xi) =
1

N1,l

∑
l:Xl∈Xj

Y obs
l · Zl −

1

N0,l

∑
l:Xl∈Xj

Y obs
l · (1− Zl) (15)

where Nk,l (where k ∈ {0, 1}) is the number of observations with Zl ∈ {0, 1} in the

sub-sample of observations with Xl ∈ Xj.

To see in detail how this second step works let us use a toy example. Let’s imagine a

simple heterogeneity structure for ITTY (x) where ITTY (Xi,p > 0)�ITTY (Xi,p ≤ 0) and

Xi,p ∈ (−1, 1) is a single regressor (namely, this is the case where the average intention-

to-treat for those individuals with positive values of Xi,p is greater than for individuals

with non-positive values). Then, the conditional CACE can be estimated in the two

different sub-populations defined with respect to Xp as15:

τ̂ cace(Xi,p > 0) =
ITT
∧

Y (Xi,p > 0)

π̂C(Xi,p > 0)
and τ̂ cace(Xi,p ≤ 0) =

ITT
∧

Y (Xi,p ≤ 0)

π̂C(Xi,p ≤ 0)
. (16)

15Alternatively, one can perform a Two Stage Least Squares (TSLS) regression within the different
sub-populations. This is our favourite estimation strategy and is the one used both for the simulations
and the application.
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2.4 Properties of the Conditional CACE Estimator

In the case of a binary instrument (Zi ∈ {0, 1}) and a binary treatment variable (Wi ∈

{0, 1}), Angrist et al. (1996) and Imbens and Rubin (2015) show that the population ver-

sions of (13)-(15) correspond to a Two Stage Least Squares (henceforth, TSLS) estimator

of τ cace, in the cases where the four IV assumptions can be assumed to hold. Hence, since

this case is analogous to our setting, one can apply the TSLS method in every leaf Xj of

the tree T for the estimation of the effect on the complier population, as it is presented

in Imbens and Rubin (1997).

The two simultaneous equations of the TSLS estimator are, in the population,

Y obs
i = α + τ cace ·Wi + εi, (17)

Wi = π0 + πC · Zi + ηi, (18)

where E(εi) = E(ηi) = 0, and E(Ziηi) = 016. In the econometric terminology, the

explanatory variable Wi is endogenous, while the IV variable Zi is exogenous.

We can express the TSLS equations, conditional on a sub-population of a leaf Xj, as

Y obs
i,Xj

= αXj
+ τ caceXj

·Wi,Xj
+ εi,Xj

, (19)

Wi,Xj
= π0,Xj

+ πC,Xj
· Zi,Xj

+ ηi,Xj
, (20)

where E(εi,Xj
) = E(ηi,Xj

) = 0, and E(Zi,Xj
ηi,Xj

) = 0.

Moreover, the following reduced equation (obtained plugging (20) into (19)) holds:

Y obs
i,Xj

=
(
αXj

+ τ caceXj
· π0,Xj

)
+
(
τ caceXj

· πC,Xj

)
· Zi,Xj

+
(
εi,Xj

+ τ caceXj
· ηi,Xj

)
= ᾱXj

+ γXj
· Zi,Xj

+ ψi,Xj
. (21)

In the case of a single instrument, the logic of IV regression is that one can estimate

the respective parameters πC,Xj
and γXj

= τ caceXj
· πC,Xj

of the regressions (20) and (21)

16The latter comes from the fact that (18) is assumed to represent the linear projection of Wi onto
Zi.
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above by least squares, when the observations in each leaf are independent and identically

distributed, then obtaining an estimate of the parameter τ caceXj
in (19). In particular, for

every element Xi of a leaf Xj, one can estimate τCACE(Xi) = τ caceXj
through TSLS, as the

following ratio (Imbens and Rubin, 2015):

τ̂CACE(Xi) ≡ τ̂TSLS
Xj

=
γ̂Xj

π̂C,Xj

. (22)

The TSLS estimator associated with (19)-(21) satisfies the next properties. They can

be proved likewise in the application of TSLS to the population case (see, e.g., Imbens

and Rubin (2015)).

Theorem 1: Consistency of the TSLS Estimator.

Let E(Zi,Xj
εi,Xj

) = 0 (Assumption 1) and π1,Xj
6= 0 (Assumption 2) hold. Then

τ̂TSLS
Xj

− τXj

p→ 0 as NXj
→∞, (23)

where
p→ denotes convergence in probability, and NXj

is the number of observations within

the leaf Xj.

Theorem 2: Asymptotic Normality of the TSLS Estimator.

Let both Assumptions 1 and 2 hold. Then

√
NXj

(
τ̂TSLS
Xj

− τXj

) d→ N
(
0, NXj

· avar(τ̂TSLS
Xj

)
)

as NXj
→∞, (24)

where
d→ denotes convergence in distribution, N stands for normal distribution, and

avar(τ̂TSLS
Xj

) is the asymptotic variance of the TSLS estimator.

The proofs of the two Theorems above directly follow from their unconditional ver-

sions17. Here we want to stress that in order for the convergence of our estimator to τXj

and its normality to hold approximately we need to have a sufficient number of observa-

tions within every leaf. Hence, we suggest to perform our algorithm on sufficiently large

datasets and to trim those leaves where the number of observation is not large enough.

17For further details on these proofs we refer to (Greene, 2003, Chapter 12).
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3 Monte Carlo Simulations

To evaluate the performance of the BCF-IV algorithm we compare it, through Monte

Carlo Simulations, with two methods that are directly tailored for drawing causal infer-

ence in irregular assignment mechanism scenarios: the Honest Causal Trees with Instru-

mental Variable (HCT-IV) algorithm (Bargagli Stoffi and Gnecco, 2019) and Generalized

Random Forests (GRF) algorithm (Athey et al., 2016). Both the latter algorithms outper-

form other machine learning algorithms not tailored for irregular assignment mechanisms,

so we focus, in this context, just on a comparison within these three algorithms.

Since the main focus of this paper is on the discovery of the heterogeneity in the

causal effects we compare the algorithms on three dimensions: (i) the correct choice of

the variable that drives the heterogeneity (heterogeneity driving variable [HDV]), (ii) the

correct choice of the threshold value given the right identification of the HDV, and (iii)

the mean-squared error for the heterogeneous causal effects given the correct choice of

the HDV.

For Monte Carlo Simulations we build two different designs. The functional forms

of the designs are built following the simulation designs in Wang et al. (2018). The

first design takes the form of Yi =
∑k

p=1 Xi,p + Wi ·Xi,1 + ξi + εi where Xi,p ∼ N (0, 1),

Wi ∼ Bern(0.5), ξi ∼ N (0, 0.01) and εi ∼ N (0, 1). The interaction term between the

regressor Xi,1 and the treatment indicator Wi is functional to heterogenise the treatment

effects, while the nuisance parameter ξi is an unobserved variable that affects both Wi

and the response variable Yi. The second design has the same functional form but xi,p ∼

Bern(0.5). In both the designs we set the correlations between Wi, the instrument Zi and

the nuisance parameter ξi to be: Cor(Wi, Zi) ∈ (0.55, 0.65) and Cor(Wi, ξi) ∈ (0.45, 0.55),

while k assumes values 5 and 10 and the sample sizes are 500, 1000, 5000. For both the

designs the results are aggregated over 30 rounds of simulations.

The results from the simulations are shown in Table 1. As we can see from Panel

A, the correct identification of the HDV is very similar for BCF-IV and GRF in the

designs with 500 and 5,000 units. GRF is asymptotically faster in identifying the right

HDV, as it outperforms both BCF-IV and HCT-IV when the sample size is 1,000. Panel
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B depicts the results in terms of mean squared error between the true and predicted

threshold (clearly, the threshold is not available in Design 2 where the regressors are

binary variables). BCF-IV outperforms both GRF and HCT-IV with all the sample sizes

and with both 5 and 10 features (with the exception of Design 1 in the sample of 5,000

units with 5 features). Panel C depicts the mean squared error of prediction for the causal

effects given the correct identification of the HDV. The clear advantage of using BCF-IV is

given by the correct identification of the treatment effects. Indeed, BCF-IV outperforms,

in terms of lower mean-squared-error of prediction for the treatment effects, the other

algorithms in both the designs with 5 and 10 features (with the exception of Design 1

in the samples of 5,000 units with 5 features and 500 units with 10 features). Hence, in

a scenario with binary regressors, BCF-IV is preferable irrespective of the sample size.

However, in a scenario with standardized regressors18, there is a trade off between the

capacity of getting the right HDV and the capacity of correctly estimating the causal

effect. In designs with samples sizes of 1,000, GRF outperforms BCF-IV in correctly

identifying the HDV but fails to estimate precisely the causal effect. As the sample size

increases, in particular in the scenario with 5 features, both the algorithms get to the

same asymptotic results in terms of correct HDV identification and mean-squared-error

of prediction.

We argue that, in small samples, BCF-IV would be preferable to GRF because, while

the proportion of correctly identified HDVs is very similar, the gains obtained both in

terms of mean-squared-error between the true and predicted threshold and the true and

predicted causal effects are much larger. Indeed, the relative gap19 between the true and

predicted causal effects ranges between 15% and 81% in favour of BCF-IV, while the

relative gap in the proportion of correctly identified HDV ranges from -10% (in favour of

GRF) to 30% (in favour of BCF-IV). Moreover, Figure 2 depicts the distribution of the

estimated causal effects over 100 repeated bootstrapped samples for both BCF-IV and

18Namely, when the regressors are distributed as a standardized normal distribution.
19The formula for the relative gap is, for the MSE of prediction, is the following (Wang et al., 2018):

Relative Gap =
MSEGRF −MSEBCF -IV

MSEGRF
× 100.

The relative gap is positive when BCF-IV outperforms GRF and negative viceversa.
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GRF. In both cases the distribution of the estimated effect for BCF-IV is centered closer

to the true values (one and two, respectively) than its distribution for GRF. Hence, we

claim that the gain in the mean-squared-error of prediction for the causal effect outweights

the slower identification of HDVs. This holds true as BCF-IV and GRF converge to a

very similar fit, as the sample size increase, with respect to the three dimensions that are

object of our analysis. Moreover, the asymptotic behaviour of BCF-IV is slightly better

than the one of all the other techniques.

Table 1: Monte Carlo Comparison of BCF-IV, GRF and HCT-IV 20

Panel A: Proportion of Correctly Identified Heterogeneity Driving Variables (HDV)

Sample Size

#Features Approach 500 1,000 5,000 500 1,000 5,000

Design 1 Design 2

HDV

5 BCF-IV 0.57 0.57 1.00 0.90 0.96 1.00

GRF 0.63 0.83 1.00 0.93 1.00 1.00

HCT-IV 0.43 0.40 0.70 0.53 0.56 0.86

10 BCF-IV 0.30 0.33 0.73 0.53 0.93 1.00

GRF 0.23 0.43 1.00 0.50 0.96 1.00

HCT-IV 0.17 0.30 0.77 0.20 0.63 0.83
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Panel B: Mean Squared Error between True and Predicted Threshold

Sample Size

#Features Approach 500 1,000 5,000 500 1,000 5,000

Design 1 Design 2

Threshold

5 BCF-IV 0.062 0.037 0.006 - - -

GRF 0.063 0.069 0.002 - - -

HCT-IV 0.185 0.188 0.045 - - -

10 BCF-IV 0.046 0.014 0.017 - - -

GRF 0.190 0.125 0.040 - - -

HCT-IV 0.096 0.023 0.167 - - -

Panel C: Mean Squared Error between True and Predicted Causal Effects

Sample Size

#Features Approach 500 1,000 5,000 500 1,000 5,000

Design 1 Design 2

Causal Effects

5 BCF-IV 0.047 0.026 0.002 0.048 0.005 0.010

GRF 0.330 0.030 0.001 0.055 0.006 0.011

HCT-IV 0.067 0.051 0.012 0.048 0.005 0.010

10 BCF-IV 0.017 0.021 0.020 0.036 0.005 0.002

GRF 0.230 0.197 0.128 0.190 0.105 0.012

HCT-IV 0.013 0.039 0.046 0.036 0.005 0.002
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((a)) The true heterogeneous effect is one ((b)) The true heterogeneous effect is two.

Figure 2: Distribution of the estimated causal effects for both BCF-IV and GRF in 100 bootstrapped

samples in the first design.

In Appendix B, we provide a number of robustness checks of the Monte Carlo simula-

tion. In particular, we focus on what happens to the fit of the three algorithms when one:

(i) changes the correlation between Zi and Wi (possible weak-instrument problems)21; (ii)

introduces a violation in the exclusion restriction; (iii) changes the specification of the

propensity score for the BCF-IV; (iv) introduces multiple heterogeneity variables; (v)

changes the error distribution. The results that we highlighted before hold true also

in the robustness checks: BCF-IV converges slowly to an optimal identification of the

HDVs but largely outperforms GRF with respect to the mean-squared-error of prediction

for the causal effects22. Moreover, the performance of BCF-IV does not seem to widely

deteriorate, as compared to the baseline models in Table 1, in any of the robustness

designs.

21It is important to highlight that in order to avoid weak-instrument problems within a leaf our
algorithm performs a weak-instrument test in every sub-sample (namely, an F-test on the first stage
regression) and discards the leaves where the null hypothesis of weak instrument is not rejected.

22However, when we introduce a partial violation of the exclusion restriction assumption (design 2)
we see exactly the opposite: BCF-IV outperforms GRF with respect to the identification of the correct
HDV while GRF outperforms BCF-IV in precisely estimating the causal effects.
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4 Heterogeneous Causal Effects of Education Fund-

ing

Students’ performance has been object of many studies among the last decades, starting

from the seminal paper by Beckman (1970). This is due to the fact that there is a wide

consensus around the impact of students’ performance (and in turn their cultural capital)

on job achievements later in life (Pascarella and Terenzini, 1991; Wise, 1975). Students’

performance can be driven by multiple factors connected with students’ characteristics

and environmental characteristics.However, to the best of our knowledge, this is the first

paper to study the impact of additional school funding on students’ performance using

machine learning techniques tailored for causal inference. In this Section we apply the

BCF-IV algorithm to evaluate the impact and estimate the heterogeneity in the effects

of additional funding to schools with disadvantaged students on students’ performance.

First, we describe the data used for this application. Next, we depict the identification

strategy. Finally, we describe the results obtained and their relevance in the economics

of education literature.

4.1 Data

Starting from 2002, the Flemish Ministry of Education promoted the “Equal Educational

Opportunities” program (henceforth EEO) to ensure equal educational opportunities to

all the students (OECD, 2017).

The EEO program provides additional funding for secondary schools with a signifi-

cant share of disadvantaged students. Thanks to the funding schools can hire additional

teachers and increase the number of teaching hours. Pupils are considered to be disad-

vantaged on the basis of five different indicators: (i) the pupil lives outside the family;

(ii) the pupil does not speak Dutch as a native language; (iii) the mother of the pupil

does not have a secondary education degree; (iv) the pupil receives educational grant

guaranteed for low income families; and (v) one of the parents is part of the travelling

population. In order for a school to be eligible for the EEO funding, it needs to satisfy
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two conditions: the first condition is that the share of students with at least one of the

five characteristics has to exceed an exogenously set threshold; the second condition is

that the school has to generate at least six teaching hours. The exogenous cutoff is, for

students in the first two years of secondary education (first stage students), a minimum

share of 10% disadvantaged students.

The Flemish Ministry of Education provided us with data on the universe of pupils in

the first stage of education in the school year 2010/2011 (135,682 students). In particular,

we have data on student level characteristics and school level characteristics. The student

level characteristics cover the gender of the pupil (gender), the grade retention in primary

school (retention) and the inclusion of the pupil in the special need’s student population

in primary school in primary school (which serves as a proxy of student’s low cognitive

skills). The school level characteristics include both teacher characteristics, such as the

teachers’ age, seniority and education, and principal characteristics, such as the principals’

age and seniority. Teacher and principal seniority measures the level of experience of the

teachers and principals, respectively. These variables assume values in a range from 1 to

7, where teachers (and principals) with a seniority level of 1 are the least experienced (0-5

years of experience) and teachers (and principals) with a seniority level of 7 are the most

experienced (more than 30 years of experience)23. Similarly, teacher and principal age

are reported as categorical variables that range from 1 to 8, where teachers/principals

in the first category are the youngest (less than 30 years old) and teachers/principals in

the last category are the oldest (more than 60 years old)24. Teachers’ education records

whether or not the teacher holds a pedagogical training (in the following we will refer to

it as “teacher training”). All these variables are aggregated at school level in the form

of averages (for age and seniority) and shares (for teachers’ education) and assigned to

each student with respect to the school where he/she is enrolled.

The outcome variables are two dummy variables defined as follows: the variable

23Teachers and principals’ seniority classes are the following: class 1 between 0 and 5 years of expe-
rience; class 2 between 6 and 10; class 3 between 11 and 15; class 4 between 16 and 20; class 5 between
20 and 25; class 6 between 26 and 30; class 7 more than 30.

24Teachers and principals’ age classes are the following: class 1 less than 30 years old; class 2 between
30 and 34; class 3 between 35 and 39; class 4 between 40 and 44; class 5 between 45 and 49; class 6
between 50 and 54; class 7 between 55 and 60; class 8 more than 60.
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progress school assumes value 1 if the student progresses to the following year with-

out any grade retention and 0 if not (this variable is a complement of school retention);

the variable A-certificate assumes value 1 if the student gets an “A-certificate” at the

end of the school year (which is the highest grade) and 0 if not. Since we do not have

data on standardized test scores for Flemish students, A-certificate is a good, available

proxy of student performance. Every year, each student performs a final test and gets a

grade ranking from “A” to “C”. Students that get an “A” can progress school without

any restriction, while students that get either “B” or “C” can progress school but only in

specific programs or have some grade retention. Both these outcome variables are proxies

for different levels of students’ performance: a positive A-certificate proxies for a higher

level of performance than a positive progress school. In principle, the target of a policy-

maker could be to have the highest possible share of students getting “A-certificates” and

the lowest share of students not progressing through school.

4.2 Identification Strategy

To evaluate the impact of the policy on students’ performance, we exploit the cutoff

around the 10% share of disadvantaged students in the first stage of secondary education.

In order to draw proper causal inference, we focus on the observations just around the

threshold. The students in schools just below the threshold are assigned to the control

group (Zi = 0), while the students in schools just above the threshold are assigned to

the treated group (Zi = 1). We determine the optimal bandwidth using the “rdrobust

package” in R (Calonico et al., 2015). The optimal, bias-corrected bandwidths around

the cutoff are 3.5% and 3.7%, respectively for the outcome variables A-certificate and

progress school. Accordingly to these two bandwidths, we obtain two refined samples

where the sample with the 3.5% bandwidth is the smallest and the sample with the 3.7%

bandwidth the largest. Moreover, to guarantee an equal representation to all the schools,

and avoid biases related to the over-representation of biggest schools’ students, we sample

50 pupils from each school. In turn, this leads to a higher balance in the averages between

the observations assigned to the treatment and the observations assigned to the control,
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as shown in panel (a) of Figure 5. In Appendix C, we run a series of tests to show that

the RDD (Regression Discontinuity Design) is valid for this application. Moreover, as

a robustness check we sample a higher number of students according to the size of the

smallest school (62 pupils) from every school. In Appendix D, we show the balance in

the samples of units assigned to the treatment and to the control in this second scenario.

4.3 Results

This Section assesses the effects of additional funding on students’ performances and

highlights which are the main drivers of the heterogeneity in causal effects. These analyses

are made for both the outcome variables: A-certificate and progress school25.

4.3.1 A-Certificate

Starting from the seminal contributions of Coleman (1966) and Hanushek (2003) to more

recent contributions by Jackson et al. (2015) and Jackson (2018), the question on whether

or not school spending affects students performances has been central in the economic

literature.

In our study, the variable A-certificate serves as a proxy for positive performance. In

our sample, the students that got an “A-certificate” are the 91.73% of the population.

In Figure 3, are depicted the heterogeneous Complier Average Causal Effects (CACE)

estimated using the proposed model: the darker the shade of blue in the node the higher

the causal effect2627.

The overall effect of the additional funding is not significant, although positive. This

finding is in line with recent literature on school spending and students’ performance in

a cross-country scenario (Hanushek et al., 2016; Hanushek and Woessmann, 2017) and

in the Flanders, in particular (De Witte et al., 2017, 2018). Nevertheless, rather than

25It is important to highlight that the results for both the outcomes, considered separately, in terms of
effects and heterogeneity drivers, remain roughly the same when we widen the sample of units included
in the analysis (results are reported in the Appendix D).

26The nodes for whom (i) it was not possible to compute the CACE or, (ii) the weak-IV test was not
rejected were excluded from the plot.

27In Figures 3, 4, 8, 9, are depicted the so-called summarizing trees (Hahn et al., 2017). A summarizing
tree is a classification or regression tree that is built using the fitted values estimated from the BCF-IV.
These summarizing trees are used to provide a visualization of the heterogeneity in the causal effects.
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focusing on the overall average effect it is more interesting to explore the heterogeneous

effects.

The first driver in the heterogeneity of the effects is the dummy variable primary

retention: the effects of additional funding are larger for students that experienced grade

retention during primary school. These effects, even if not significant, show that the

effect is slightly higher for students that had a lower performance in the past. The

second driver of heterogeneity is the age of the teacher: students in schools with younger

teachers (namely, when teaching age assumes values lower or equal to 4 on a scale from 1

to 8, referring to teachers with less than 40 years old) have a significant increase in their

performance if they did not experience any retention in primary school. This effect is

positive and significant (although slightly lower: 0.07, meaning that being treated leads

to an increase of 7% in the probability of getting the best grade) even if we rule out

the conditioning on the students with no primary retention. This heterogeneity driver

(namely, the age of the teacher) is particularly significant because there are evidences in

the education literature that connect teachers’ age to their teaching performance (Young

and Place, 1988; Kinney and Smith, 1992) and in turn teaching performance to students’

positive achievements (Kosgei et al., 2013). In our scenario, it seems that the additional

funding has a positive significant effect when the additional teaching hours are granted

to schools with more younger teachers.

Further heterogeneous effects come from the interaction between teacher age and

principal seniority. The effect for students without primary retention in schools with

younger teachers and with principals with lower levels of seniority (namely, lower or equal

than 5 on a 1 to 7 scale, referring to principals with less than 26 years of experience)

are significantly higher than the effects on the overall population. Again, this holds

true even if we rule out the conditioning on the primary retention variable (the effect

in this case is 0.17**, meaning that being treated leads to an increase of 17% in the

probability of getting the best grade). This sub-population of students that accounts

for the 32% and 34% of the overall sample (respectively, when conditioning, or not, on

the primary retention) shows effects that are between 3.2 and 3.5 times bigger than the
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overall effect28. This evidence can interpreted in the following way: the additional funding

has a positive, but not significant, effect in boosting the performance of students in the

overall population, but it increases its effect in a significant way for those students in

schools with younger teachers and less senior principals. These results, are in line with

the evidence that additional school funding does not boost the performance of the overall

population of students (Hanushek et al., 2016; Hanushek and Woessmann, 2017; De Witte

et al., 2017, 2018) and with the literature that connects students’ achievements with

teaching performance (Young and Place, 1988; Kinney and Smith, 1992) and teaching

performance with students’ performance (Kosgei et al., 2013). The novel evidence from

this research is that also principals play a role: the more senior is the principal, the

lower are the causal effects. This finding opens up new fields for further investigation,

in line with the newly established role of machine learning in the economic literature as

a “theory-driving/theory-testing” tool (Mullainathan and Spiess, 2017; Kleinberg et al.,

2017; Peysakhovich and Naecker, 2017).

These results are policy relevant because they furnish the instruments to policy-makers

to enhance the effects of additional funding on students performance. Indeed, on the one

side policy-makers could target just students in school with positive, significant effects

reducing the overall costs of the policy and using the savings to experiment more effective

policies in the other schools. On the other side, policy-makers could dig in the reason

of the lack of effectiveness of the funding in schools with certain characteristics and

implement policies to boost the effects of future funding.

283.2 is the ratio between the conditional treatment effect for the sub-population of students that did
not experience primary retention, and that are in schools with younger teachers and principals (0.1651),
corresponding to the bluer leaf in Figure 3, and the average treatment effect for the overall population
(0.0511). 3.5 is the ratio between the conditional treatment effect for the sub-population of students
that are in schools with younger teachers and principals (0.1769) and the average treatment effect on
the overall population (0.0511).
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Figure 3: Visualization of the heterogeneous Complier Average Causal Effects (CACE) of additional
funding on A-certificate estimated using the proposed model. The tree is a summarizing classification tree
fit to posterior point estimates of individual treatment effects as in (Hahn et al., 2017). It is important
to highlight that the leaves for Teacher Age greater than four were trimmed from the tree (both when
Primary Retention is equal to 0 and to 1) because of small sample size issues. The significance level is *
for a significance level of 0.05, ** for a significance level of 0.01 and *** for a significance level of 0.001.

4.3.2 Progress School

The second outcome variable, progress school, assumes value 1 if the student progresses to

the following year without any grade retention and 0 if not: roughly 98% of the students

in the sample manage to progress school in the first two years of secondary education.

This variable is a proxy for negative achievements for those students that were not able

to progress school. Therefore, it is quite interesting to understand if additional funding

were effective in driving students away from negative performance. Figure 4 depicts the

heterogeneous conditional CACEs: the darker the shade of green in the node, the higher

the causal effect.

The additional funding has a slightly positive impact on the chance of progress school

for the overall students in the sample29. This effect, as well as the heterogeneous causal

effects are not significant (again, this is in line with what was found by De Witte et al.

(2018) at school level). However, it is interesting to see which are the main drivers of the

29However, in the robustness checks this effect is slightly negative. In any case, the overall effect is
not significant.
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heterogeneity in the causal effect. The first driver is the gender of the student: the effect

seems to be positive for male students and negative for female students. This is particu-

larly interesting given the fact that the 63% of the students that do not progress school

are males. The second driver of the heterogeneity in CACE is the principal seniority.

As in the case of the previous outcome, students in schools with more senior principals

(more than 25 years of experience) show lower causal effects. This holds true even when

we do not condition on the gender of the students.

Again, the added value of our algorithm is that it could enable policy-makers to

target just those units that benefit the most from the treatment and it gives an insight

on possible inefficiencies in the allocation and/or usage of funding. From our analysis it

seems that there is room for policies that support less senior principals since students in

their schools show higher returns in terms of performance from additional funding.

Figure 4: Visualization of the heterogeneous Complier Average Causal Effects (CACE) of additional
funding on Progress School estimated using the proposed model. The tree is a summarizing classification
tree fit to posterior point estimates of individual treatment effects as in (Hahn et al., 2017). The
significance level is * for a significance level of 0.05, ** for a significance level of 0.01 and *** for a
significance level of 0.001.

5 Conclusion and Discussion

In this paper, we developed a novel Bayesian machine learning technique, BCF-IV, to

draw causal inference in scenarios with imperfect compliance. By exploring the hetero-
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geneity in the causal effects, the technique facilitates targeted policies. We show that the

BCF-IV technique outperforms other machine learning techniques tailored for causal in-

ference in precisely estimating the causal effects and converges to an optimal asymptotic

behaviour in identifying the heterogeneity driving variables (HDVs). Moreover, we show

that the competitive advantages of using BCF-IV, as compared to GRF or HCT-IV, are

large. In particular, the performance of BCF-IV in precisely estimating the heteroge-

neous causal effects shadows its slower convergence to an optimal identification of HDVs

(as compared to GRF). This is especially true if we look at the relative gaps between the

BCF-IV and the other techniques.

BCF-IV can help researchers to shed a light on the heterogeneity of causal effects

in IV scenarios in order to provide to policy-makers a relevant knowledge for targeted

policies. In our application, we evaluated the effects of additional funding on students’

performances. While the overall effects are positive but not significant, there are sig-

nificant differences among different sub-populations of students. Indeed, for students in

schools with younger teachers and younger principals (with respect to the average age and

seniority, respectively) the effects of the policy are between 3.2 and 3.5 times bigger than

the effects on the overall population (in the most conservative scenario) and significant

for the A-certificate output.

As an underlying mechanism, on the one hand, the need for additional funds can be

higher in schools with younger teachers and principals, who are more often observed in

the most disadvantaged schools. This phenomenon arises as senior teachers and principals

select themselves out of the most disadvantaged schools and more into advantaged schools,

thus creating relatively more vacancies in disadvantaged schools. Therefore, on average,

younger teachers lack a real choice but to start teaching in the most disadvantaged schools.

Moreover, thanks to the additional funds, schools can use the funds to reduce class sizes,

which might be more effective for younger (and less senior) teachers. The investigation of

the true causal channel is beyond the goals of this paper and is left to further investigation

where more granular teachers’ and principals’ characteristics are available.

What is worth highlighting in this context is that policy-makers could use the results
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from this study to target more intensively those students and schools that really benefit

from the additional funding in order to increase the welfare effects of the policy and to

enhance targeted policies to boost the effects of additional funding for those students

that seem to benefit the less.

We leave to further research the extension of these methods to other fields of economic

investigation and the development of novel machine learning algorithms for targeted

policies and welfare’s maximization. In particular, the development of an algorithm that

could deal with welfare’s maximization in the context of multiple outcomes of interest.

Moreover, further research should focus on connecting BCF-IV and GRF into a single

ensemble algorithm, following (Van der Laan et al., 2007), to obtain a novel algorithm

that combines the small and large sample properties of both BCF-IV and GRF to obtain

possible gains in imperfect compliance scenarios.
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A Discussion on the Instrumental Variables Assump-

tions

In a typical IV scenario one can express the treatment received as a function of the

treatment assigned: Wi(Zi). This leads to distinguish four sub-populations of units (Gi)

(Angrist et al., 1996; Imbens and Rubin, 2015): (i) those that comply with the assignment

(compliers : Gi = C : Wi(Zi = 0) = 0 and Wi(Zi = 1) = 1); (ii) those that never comply

with the assignment (defiers : Gi = D : Wi(Zi = 0) = 1 and Wi(Zi = 1) = 0); (iii)

those that even if not assigned to the treatment always take it (always-takers : Gi = AT :

Wi(Zi = 0) = 1,Wi(Zi = 1) = 1); (iv) those that even if assigned to the treatment never

take it (never-takers : Gi = NT : Wi(Zi = 0) = 0,Wi(Zi = 1) = 0). In such a scenario

what “one directly gets from the data” is the so-called Intention-To-Treat (ITTY ):

ITTY = E[Yi|Zi = 1]− E[Yi|Zi = 0], (25)

which is defined as the effect of the intention to treat a unit on the outcome of the same

unit. (25) can be written as the weighted average of the intention-to-treat effects across

the four sub-populations of compliers, defiers, always-takers and never-takers:

ITTY = πCITTY,C + πDITTY,D + πNT ITTY,NT + πAT ITTY,AT , (26)

where ITTY,G is the effect of the treatment assignment on units of type G and πG is the

proportion of units of type G.

ITTY does not represent the effect of the treatment itself but just the effect of the

assignment to the treatment. If we want to draw proper causal inference in such a scenario

we need to invoke the four classical IV assumptions (Angrist et al., 1996):

1. exclusion restriction: Yi(0) = Yi(1), for Gi ∈ {AT,NT} where, for each sub-

population and z ∈ {0, 1}, the shortened notation Yi(z) is used to denote Yi(z,Wi(z))

2. monotonicity : Wi(1) ≥ Wi(0)→ πD = 0;
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3. existence of compliers : P (Wi(0) < Wi(1)) > 0→ πC 6= 0;

4. unconfoundedness of the instrument (expressed in terms of conditional indepen-

dence notation):

Zi ⊥⊥ (Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1),Wi(0),Wi(1)).

In our application, these four assumptions are assumed to hold. Let us look at them

in detail. The exclusion restriction is assumed to hold since we can reasonably rule out

a direct effect of being eligible (around the threshold) on the performance of students.

The effect, in this case, can be reasonably assumed to go through the actual reception

of additional funding. Monotonicity holds by design: since we are in a one-sided non-

compliance scenario there is no possibility for those who are not assigned to the treatment

to defy and get the treatment. The same can be said about the existence of compliers.

Since the sub-population of always-takers can be ruled out by design, this leads to the fact

that units receiving the treatment are compliers. Unconfoundedness of the instrument

can also reasonably be assumed to hold since observations around the exogenous threshold

are randomized to the assigned-to-the-treatment group and the assigned-to-the control

group. This holds true especially since we do not observe any manipulation around the

threshold and sorting of the units into the treated group.

B Robustness Checks in Monte Carlo Simulations

We introduce some changes in the synthetic models used to test the fit of the BCF-IV (as

compared to GRF and HCT-IV). The model from which we start is the simplest model

introduced in Section 3: Yi =
∑k

p=1Xi,p + Wi ·Xi,1 + ξi + εi where Xi,p ∼ N (0, 1),Wi ∼

Bern(0.5), ξi ∼ N (0, 0.01), εi ∼ N (0, 1) and k = 5. We introduce 5 different variations

in this model (each one corresponds to a different design in Table 5):

1. we change the correlation between Zi and Wi in order to introduce possible weak-

instrument problems: we decrease the correlation to Cor(Wi, Zi) ∈ (0.45, 0.55)

and we do so by introducing in half of the population a very weak instrument

Cor(Wi, Zi|Xi,5 < 0) ∈ (0.35, 0.45);
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2. we introduce a partial violation in the exclusion restriction;

3. we introduce multiple heterogeneity driving variables (HDVs):

Yi =
k∑

p=1

Xi,p +
2∑

p=1

(Wi ·Xi,p) + ξi + εi; (27)

where this variation is introduced to test if the HDVs are correctly selected even

when they are multiple;

4. we change the error distribution, εi ∼ U(0, 1), to test if the algorithm is robust to

changes in the noise parameter;

5. we manipulate the propensity score function for the BCF-IV, to test if this model

is robust to a mis-specification of π̂(x).

The results from these five different designs are reported in 1. In the presence of a

weak-instrument (design 1), the fit of all the three algorithms deteriorates. As we saw

in the Monte Carlo simulations in Section 3, GRF is better in identifying the correct

HDV but BCF-IV outperforms both GRF and HCT-IV in picking the right threshold

and in precisely estimating the causal effect. As we introduce a partial violation of the

exclusion restriction (design 2), BCF-IV outperforms the other algorithms with respect to

all the dimensions both in the cases with small sample and large sample sizes. When we

introduce multiple heterogeneity driving variables, the capacity of correctly estimating

the causal effects for GRF deteriorates while BCF-IV outperforms the other algorithms.

In the last two designs (design 4 and 5), we again see a trade-off, for the designs with 500

and 1,000 units, between the capacity of correctly identifying the HDV (GRF outperforms

the other techniques) and precisely estimating the causal effects (BCF-IV outperforms the

other algorithms). In both the designs, BCF-IV and GRF get to fairly similar asymptotic

results.

37



Table 1: Robustness Checks

Sample Size

#Design Approach 500 1000 5000 500 1000 5000 500 1000 5000

HDV Threshold MSE given HDV

1 BCF-IV 0.37 0.63 0.83 0.065 0.031 0.007 0.078 0.117 0.017

GRF 0.56 0.73 1.00 0.157 0.107 0.007 0.230 0.122 0.011

HTC-IV 0.23 0.36 0.73 0.289 0.090 0.065 0.110 0.140 0.022

2 BCF-IV 0.63 0.40 0.77 0.022 0.061 0.002 0.005 0.107 0.043

GRF 0.43 0.57 0.23 0.052 0.067 0.003 0.171 0.082 0.035

HTC-IV 0.43 0.37 0.53 0.189 0.170 0.064 0.018 0.102 0.056

3 BCF-IV 0.60 0.76 1.00 0.352 0.242 0.021 0.183 0.077 0.004

GRF 0.77 1.00 1.00 0.169 0.230 0.004 0.776 0.365 0.275

HTC-IV 0.53 0.63 0.73 0.323 0.289 0.180 0.312 0.116 0.031

4 BCF-IV 0.63 0.80 1.00 0.043 0.065 0.002 0.006 0.009 0.002

GRF 0.80 0.97 1.00 0.068 0.014 0.001 0.211 0.031 0.001

HTC-IV 0.47 0.40 0.70 0.207 0.103 0.087 0.029 0.014 0.017

5 BCF-IV 0.53 0.63 1.00 0.112 0.020 0.016 0.018 0.011 0.007

GRF 0.63 0.83 1.00 0.062 0.069 0.002 0.330 0.030 0.001

HTC-IV 0.43 0.40 0.70 0.185 0.188 0.045 0.067 0.051 0.012

Table 1: Results from the robustness checks. HDV refers to the proportion of correctly identified
Heterogeneity Driving Variables (HDV); Threshold refers to the mean-squared-error between the true
threshold and the predicted one; MSE given HDV refers to the mean-squared-error of prediction for the
true causal effects. We highlighted in bold the best results for every round of simulations.

C RDD Checks

In order to check whether or not the RDD (Regression Discontinuity Design) setting is

valid, we implement the following checks (Lee and Lemieux, 2010)30: (i) we check the bal-

30The checks depicted in this Subsection are made on the sample of 50 students.
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ance in the sample of units assigned to the treatment just above and below the threshold

(this is done to check if the randomization holds); (ii) we check if there are manipulations

in the distribution of schools with respect to the share of disadvantaged students around

the threshold, (iii) we employ a formal manipulation test, the McCrary test (McCrary,

2008), to find out sorting around the threshold; (iv) we check if there is a discontinuity in

the probability of being assigned to the treatment around the threshold. Table 2 shows

the averages of the control variables are not statistically different for the group of units

assigned to the treatment and assigned to the control around the cutoff, with the excep-

tion of teacher seniority. Thus, there is evidence that more senior teachers self-select in

schools with lower disadvantaged students. However, as we will show in Section 4.3, this

variable does not show up in any model as an heterogeneity driver. We argue that includ-

ing this variable in our model results in more robust findings. This is due to the fact that

our model is robust to spurious heterogeneity coming from unbalances in the samples, as

shown by Hahn et al. (2017) in randomized and regular assignment mechanisms’ scenar-

ios. Moreover, panel (b) of Figure 5 shows the standardized difference in the means for

these two groups with the relative standardized confidence intervals. The McCrary ma-

nipulation test implemented in Calonico et al. (2015) through a Local-Polynomial Density

Estimation leads to the rejection of the null hypothesis of the threshold manipulation31.

Both these results and the plot of the distribution of schools with respect to the share

of disadvantaged students around the threshold in Figure 6 indicate that there is no evi-

dence of manipulation. Finally, Figure 7 shows a clear discontinuity in the probability of

being assigned to the treatment around the threshold.

However, as we pointed out in the Section 4, schools that are assigned to the treatment

actually receive the treatment if they satisfy an additional condition of a minimum of six

teaching hours. This leads to a fuzzy-regression discontinuity design where the jump in

the probability of being assigned to the treatment around the cutoff is not sharp. This

scenario is characterized by imperfect compliance.

Students can be sorted, with respect to their compliance status, into two types: (i)

31The McCrary test leads to a T-value of -0.7497 corresponding to a p-value of 0.4534. The test is
performed aggregating the student data at school level.
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students in schools above the cutoff with more than six teaching hours or students in

schools below the cutoff (compliers : Wi(Zi = 1) = 1) or Wi(Zi = 0) = 0); (ii) students

in schools above the cutoff but with less than six teaching hours (never-takers : Wi(Zi =

1) = 0)32.

The assignment to the treatment variable (i.e., studying in a school just below or above

the cutoff) is a relevant instrumental variable in our scenario (namely, the correlation

between Zi and Wi is roughly 0.62). Moreover, we can reasonably assume both the

exogeneity condition and the exclusion restriction to hold in this scenario. On the one

side, since the randomization of the instrument holds there is no reason not to assume

conditional independence between the instrument and the unobservables. On the other

side, the exclusion restriction seems to hold as well since we can believe that being just

below or above the threshold does not affect the performance of students in any way

other than through the additional funding. In this imperfect compliance setting, the

causal effect of the additional funding on the students’ performance can be assessed

through the Complier Average Causal Effect in (5). Moreover, using our novel BCF-IV

algorithm we can estimate the Conditional Complier Average Causal Effect, (6), to assess

the heterogeneity in the causal effects.

32This a so-called case of one-sided-non-compliance, in which we do not observe any always-takers
since for those that are sorted out of the assignment to the treatment (Zi = 0) there is no possibility to
access the treatment.
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(a): Balance improvement obtained with sam-

pling. “Initial” refers to the initial sample,

while “Sampled” refers to the bootstrapped

sample.

(b): Standardized difference in means (SDM)

and 95% confidence interval around the cutoff

with a bandwidth of 3.5%.

Figure 5: The label “PS” refers to Principal Seniority, the label “PA” to Principal Age, the label “TS”
to Teacher Seniority, the label “TA” to Teacher Age, the label “TT” to Teacher Training and the label
“BULO” refers to students with special needs in primary education.

Figure 6: Frequency distribution of disadvantaged students around the cutoff (0.10) with a 0.5 band-
width. In red the density of the disadvantaged students in the units assigned to the treatment and in
blue the density for the units assigned to the control. The densities are aggregated at school level.
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Above Cutoff Below Cutoff Full Sample p-value

Retention 0.036 (0.187) 0.037 (0.189) 0.037 (0.188) 0.913

Gender 0.492 (0.500) 0.471 (0.499) 0.482 (0.500) 0.155

Special Needs 0.000 (0.000) 0.002 (0.044) 0.001 (0.030) 0.045

Teacher Age 4.022 (0.333) 4.024 (0.269) 4.023 (0.304) 0.814

Teacher Seniority 3.867 (0.452) 3.927 (0.342) 3.895 (0.404) 0.000

Teacher Training 0.982 (0.025) 0.981 (0.026) 0.982 (0.026) 0.169

Principal Age 6.022 (1.308) 5.951 (1.229) 5.988 (1.271) 0.067

Principal Seniority 5.778 (1.228) 5.829 (0.935) 5.802 (1.098) 0.120

Observations 2250 2050 4300

Table 2: Results for 3.5% discontinuity sample with bootstrapped samples of size 50. Standard devia-
tions are in parentheses and the p-value corresponds to a t-test for the difference between the means in
the group above and below the threshold.

Figure 7: Probability of treatment given the share of disadvantaged students (EEO percentage) in the
first stage of secondary education (cutoff 10%).

D Robustness Checks for Policy Evaluation

In this Section of the Appendix, we test the robustness of our models to sampling vari-

ations. The sampling variations introduced are of two sources: (i) a wider bandwidth
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around the threshold (from 3.5% to 3.7%) and (ii) an increase in the number of sampled

units (from 50 up to the lowest number of students per school which is 62). To under-

stand if the balance and the results are robust we show the balance in the averages in

the samples of units assigned to the treatment and assigned to the control (Tables 3, 4,

5) and the results of the causal effects when we increase the number of units sampled

(Figures 8, 9).

In all the different samples the school level characteristics remain widely balanced

(with the exception of teacher seniority33). Primary retention and Gender seem to be

slightly unbalanced when we widen the bandwidth but this holds true just in the case

where we sample through bootstrap 50 units (Gender in this case gets back to a good

balance).

Above Cutoff Below Cutoff Full Sample p-value

Gender 0.471 (0.499) 0.493 (0.500) 0.482 (0.499) 0.110

Retention 0.039 (0.194) 0.035 (0.184) 0.037 (0.189) 0.418

Special Needs 0.001 (0.039) 0.000 (0.000) 0.001 (0.027) 0.045

Teacher Age 4.024 (0.269) 4.002 (0.333) 4.023 (0.304) 0.793

Teacher Seniority 3.926 (0.341) 3.867 (0.452) 3.895 (0.404) 0.000

Teacher Training 0.982 (0.025) 0.981 (0.026) 0.982 (0.026) 0.126

Principal Age 5.951 (1.228) 6.002 (1.308) 5.988 (1.271) 0.041

Principal Seniority 5.829 (0.934) 5.777 (1.227) 5.802 (1.097) 0.083

Observations 2790 2542 5332

Table 3: Results for 3.5% discontinuity sample with bootstrapped samples of size 62. Standard devia-
tions are in parentheses and the p-value corresponds to a t-test for the difference between the means in
the group above and below the threshold.

33This could be due to the fact that less senior principals select themselves in schools with a lower
percentage of disadvantaged students.

43



Above Cutoff Below Cutoff Full Sample p-value

Retention 0.030 (0.170) 0.042 (0.201) 0.036 (0.186) 0.025

Gender 0.497 (0.500) 0.461 (0.499) 0.479 (0.500) 0.015

Special Needs 0.000 (0.021) 0.001 (0.037) 0.001 (0.030) 0.309

Teacher Age 4.022 (0.333) 4.023 (0.260) 4.022 (0.299) 0.955

Teacher Seniority 3.867 (0.452) 3.932 (0.330) 3.899 (0.398) 0.000

Teacher Training 0.982 (0.025) 0.983 (0.026) 0.983 (0.026) 0.805

Principal Age 6.022 (1.308) 6.000 (1.206) 6.011 (1.259) 0.556

Principal Seniority 5.778 (1.228) 5.818 (0.912) 5.798 (1.083) 0.212

Observations 2250 2200 4450

Table 4: Results for 3.7% discontinuity sample with bootstrapped samples of size 50. Standard devia-
tions are in parentheses and the p-value corresponds to a t-test for the difference between the means in
the group above and below the threshold.

Above Cutoff Below Cutoff Full Sample p-value

Retention 0.029 (0.168) 0.040 (0.196) 0.034 (0.182) 0.026

Gender 0.490 (0.500) 0.464 (0.499) 0.477 (0.500) 0.058

Special Needs 0.000 (0.019) 0.001 (0.038) 0.001 (0.030) 0.174

Teacher Age 4.022 (0.333) 4.023 (0.260) 4.022 (0.299) 0.950

Teacher Seniority 3.867 (0.452) 3.932 (0.330) 3.899 (0.398) 0.000

Teacher Training 0.982 (0.025) 0.983 (0.026) 0.983 (0.026) 0.784

Principal Age 6.022 (1.308) 6.000 (1.206) 6.011 (1.259) 0.512

Principal Seniority 5.778 (1.227) 5.818 (0.912) 5.798 (1.083) 0.165

Observations 2790 2728 5518

Table 5: Results for 3.7% discontinuity sample with bootstrapped samples of size 62 (the smallest
school in the sample). Standard deviations are in parentheses and the p-value corresponds to a t-test for
the difference between the means in the group above and below the threshold.

With respect to the results of the BCF-IV algorithm they remain widely the same

when we increase the number of sampled units. There are two slight differences: (i) in
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the case of the summarizing tree for A-certificate, in Figure 8, for units with Primary

retention equal to one the effect is now negative but still not significant (it is important

to notice that these observations account just for the 4% of the overall units); (ii) in

the case of the summarizing tree for Progress School the overall effect is now negative

but still not significant. What is more important is that there are no differences in the

heterogeneity drivers and in the direction of the effects (i.e., for more senior principals

the effect for both the outcomes are still lower).

Figure 8: Visualization of the heterogeneous Complier Average Causal Effects (CACE) of additional
funding on A-certificate estimated using the proposed model. The tree is a summarizing classification tree
fit to posterior point estimates of individual treatment effects as in Hahn et al. (2017). The significance
level is * for a significance level of 0.05, ** for a significance level of 0.01 and *** for a significance level
of 0.001.
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Figure 9: Visualization of the heterogeneous Complier Average Causal Effects (CACE) of additional
funding on Progress School estimated using the proposed model. The tree is a summarizing classification
tree fit to posterior point estimates of individual treatment effects as in Hahn et al. (2017). The signifi-
cance level is * for a significance level of 0.05, ** for a significance level of 0.01 and *** for a significance
level of 0.001.

E Robustness Checks on the full sample

This section explores the robustness of the results on the full sample for the first cycle

of secondary education. As such, we do not focus anymore on the students in schools

close to the exogenous cutoff point, but include all schools in the analysis. Extending

the analysis to a wider set of schools comes at the cost of the interpretation: we cannot

interpret the findings as causal anymore as schools far away from the exogenous cutoff

point have different observed and unobserved characteristics. It can be shown that the

schools which are far away from the threshold, have other observed characteristics than

schools close to the threshold. These observed characteristics might drive the results.

Therefore, the findings should be interpreted with significant caution and can only be

considered as exploratory evidence for future research.

For the outcome variable “A-certificate” in the first cycle of secondary education, the

underlying algorithm does not find any heterogeneity for the outcome “A-certificate”.

This signals that the average effect size of -0.081 does not correlate with any other vari-

able. Given the absence of heterogeneity, a visual representation is not included in this

Appendix.
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For the outcomes variable “Progress School” in the first cycle, we observe a more

interesting pattern. The results are presented in Figure 10. The results indicate an

average, non-significant, influence of the policy on “Progress school”. However, there

is some heterogeneity by the principal seniority. In particular, more senior principals

seem to have lower school progress of their students. It should be noted that this finding

should be interpreted with sufficient caution, as we now consider the full sample. It is

very likely that the more senior principals are selecting themselves in the schools with

more advantaged students, such that this finding is likely to be an endogenous estimate

hiding unobserved heterogeneity.

Figure 10: Visualization of the heterogeneous Complier Average Causal Effects (CACE) of additional
funding on Progress School estimated using the proposed model on the full sample of students in the first
cycle of secondary education. The tree is a summarizing classification tree fit to posterior point estimates
of individual treatment effects as in Hahn et al. (2017). The significance level is * for a significance level
of 0.05, ** for a significance level of 0.01 and *** for a significance level of 0.001.

F Robustness Checks on the second and third cycle

This section presents the robustness test on the second and third cycle of secondary

education. In the first cycle (i.e., the first two years) of secondary education funding is

provided to schools with more than 10 percent of disadvantaged students. This contrasts

to the second and third cycle of secondary education, where the exogenous threshold is

set at 25 percent. As the methodology suggested in this paper introduces a procedure

to include imperfect compliance, it can be expected that the instrumental variables part
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of the suggested routine becomes less relevant as the second eligibility criterion (i.e.,

generate at least 6 teaching hours) becomes less an issue for the schools. As such, the

estimation resembles closer to the traditional BCF-procedure, rather than to the newly

proposed BCF-IV procedure. Nevertheless, the underlying R-code is sufficiently flexible

such that it is accurate also in the case of full compliance.

First, consider the “A certificate” as an outcome variable. It is clear that schools

far away from the 25 percent threshold are different in their observed and unobserved

characteristics such that the analysis becomes highly endogenous, and that the results

can be misleading. Therefore, to allow for a causal interpretation of the results, we focus

on the schools close to the 25 percent threshold and estimated the optimal bandwidth

using the procedure of Calonico et al. (2015). As in the full sample analysis of the

first stage, we only observe an average, non-significant treatment effect of -0.052. The

underlying algorithm does not find any heterogeneity for the outcome “A-certificate” in

the second and third stage. This signals that the average effect size does not correlate

with any other variable. Given the absence of heterogeneity, a visual representation is

not included in this Appendix.

Second, consider the progress through school in the second and third cycle of sec-

ondary education. The results are presented in Figure 11. Although they suggest a

not statistically significant average treatment effect, we observe interesting heterogenous

average causal effects (CACE) in the nodes. In a first node, the suggested alogoritm

splits the sample between the males and the females. While we do not observed a sig-

nificant CACE for the males, a small statistically significant negative effect is observed

for females suggesting that in schools with more funding females progress slower through

school. This negative effect is offset by the positive effect for males with no grade reten-

tion in primary education. For this group, we observe a significant positive impact of the

funding. Future research could use these heterogeneous results to analyse the underlying

mechanisms causing the effects.
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Figure 11: Visualization of the heterogeneous Complier Average Causal Effects (CACE) of additional
funding on Progress School estimated using the proposed model on the sample of students in the second
and third cycle of secondary education close to the 25 percent threshold. The tree is a summarizing
classification tree fit to posterior point estimates of individual treatment effects as in Hahn et al. (2017).
The significance level is * for a significance level of 0.05, ** for a significance level of 0.01 and *** for a
significance level of 0.001.

49


